Qingdong Zeng, Long Bo, Lijun Liu, Xuelong Li, Jianmeng Sun, Zhaoqin Huang, Jun Yao
{"title":"Analysis of fracture propagation and shale gas production by intensive volume fracturing","authors":"Qingdong Zeng, Long Bo, Lijun Liu, Xuelong Li, Jianmeng Sun, Zhaoqin Huang, Jun Yao","doi":"10.1007/s10483-023-3021-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing. The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method (DDM) and the Picard iterative method. The shale gas flow considers multiple transport mechanisms, and the flow in the fracture network is handled by the embedded discrete fracture model (EDFM). A series of numerical simulations are conducted to analyze the effects of the cluster number, stage spacing, stress difference coefficient, and natural fracture distribution on the stimulated fracture area, fractal dimension, and cumulative gas production, and their correlation coefficients are obtained. The results show that the most influential factors to the stimulated fracture area are the stress difference ratio, stage spacing, and natural fracture density, while those to the cumulative gas production are the stress difference ratio, natural fracture density, and cluster number. This indicates that the stress condition dominates the gas production, and employing intensive volume fracturing (by properly increasing the cluster number) is beneficial for improving the final cumulative gas production.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 8","pages":"1385 - 1408"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3021-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing. The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method (DDM) and the Picard iterative method. The shale gas flow considers multiple transport mechanisms, and the flow in the fracture network is handled by the embedded discrete fracture model (EDFM). A series of numerical simulations are conducted to analyze the effects of the cluster number, stage spacing, stress difference coefficient, and natural fracture distribution on the stimulated fracture area, fractal dimension, and cumulative gas production, and their correlation coefficients are obtained. The results show that the most influential factors to the stimulated fracture area are the stress difference ratio, stage spacing, and natural fracture density, while those to the cumulative gas production are the stress difference ratio, natural fracture density, and cluster number. This indicates that the stress condition dominates the gas production, and employing intensive volume fracturing (by properly increasing the cluster number) is beneficial for improving the final cumulative gas production.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.