Analysis of fracture propagation and shale gas production by intensive volume fracturing

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED Applied Mathematics and Mechanics-English Edition Pub Date : 2023-07-31 DOI:10.1007/s10483-023-3021-6
Qingdong Zeng, Long Bo, Lijun Liu, Xuelong Li, Jianmeng Sun, Zhaoqin Huang, Jun Yao
{"title":"Analysis of fracture propagation and shale gas production by intensive volume fracturing","authors":"Qingdong Zeng,&nbsp;Long Bo,&nbsp;Lijun Liu,&nbsp;Xuelong Li,&nbsp;Jianmeng Sun,&nbsp;Zhaoqin Huang,&nbsp;Jun Yao","doi":"10.1007/s10483-023-3021-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing. The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method (DDM) and the Picard iterative method. The shale gas flow considers multiple transport mechanisms, and the flow in the fracture network is handled by the embedded discrete fracture model (EDFM). A series of numerical simulations are conducted to analyze the effects of the cluster number, stage spacing, stress difference coefficient, and natural fracture distribution on the stimulated fracture area, fractal dimension, and cumulative gas production, and their correlation coefficients are obtained. The results show that the most influential factors to the stimulated fracture area are the stress difference ratio, stage spacing, and natural fracture density, while those to the cumulative gas production are the stress difference ratio, natural fracture density, and cluster number. This indicates that the stress condition dominates the gas production, and employing intensive volume fracturing (by properly increasing the cluster number) is beneficial for improving the final cumulative gas production.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 8","pages":"1385 - 1408"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3021-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing. The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method (DDM) and the Picard iterative method. The shale gas flow considers multiple transport mechanisms, and the flow in the fracture network is handled by the embedded discrete fracture model (EDFM). A series of numerical simulations are conducted to analyze the effects of the cluster number, stage spacing, stress difference coefficient, and natural fracture distribution on the stimulated fracture area, fractal dimension, and cumulative gas production, and their correlation coefficients are obtained. The results show that the most influential factors to the stimulated fracture area are the stress difference ratio, stage spacing, and natural fracture density, while those to the cumulative gas production are the stress difference ratio, natural fracture density, and cluster number. This indicates that the stress condition dominates the gas production, and employing intensive volume fracturing (by properly increasing the cluster number) is beneficial for improving the final cumulative gas production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密集体积压裂裂缝扩展与页岩气生产分析
本文从裂缝扩展建模到气体流动建模进行了综合研究,并进行了相关性分析,以探索密集体积压裂的关键控制因素。采用位移间断法和Picard迭代法建立了考虑水力裂缝与天然裂缝相互作用的裂缝扩展模型。页岩气流动考虑了多种输送机制,裂缝网络中的流动由嵌入离散裂缝模型(EDFM)处理。通过一系列数值模拟,分析了簇数、阶段间距、应力差系数和天然裂缝分布对受激裂缝面积、分形维数和累积产气量的影响,并得出了它们的相关系数。结果表明,对受激裂缝面积影响最大的因素是应力差比、阶段间距和天然裂缝密度,而对累积产气影响最大的是应力比、天然裂缝密度和簇数。这表明应力条件主导了天然气产量,采用密集体积压裂(通过适当增加簇数)有利于提高最终累积天然气产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
期刊最新文献
Fracture of films caused by uniaxial tensions: a numerical model Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model Variable stiffness tuned particle dampers for vibration control of cantilever boring bars Wrinkling in graded core/shell systems using symplectic formulation Nonlinear analysis on electrical properties in a bended composite piezoelectric semiconductor beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1