{"title":"A nonparametric mixture approach to density and null proportion estimation in large-scale multiple comparison problems","authors":"Xiangjie Xue, Yong Wang","doi":"10.1111/anzs.12383","DOIUrl":null,"url":null,"abstract":"<p>A new method for estimating the proportion of null effects is proposed for solving large-scale multiple comparison problems. It utilises maximum likelihood estimation of nonparametric mixtures, which also provides a density estimate of the test statistics. It overcomes the problem of the usual nonparametric maximum likelihood estimator that cannot produce a positive probability at the location of null effects in the process of estimating nonparametrically a mixing distribution. The profile likelihood is further used to help produce a range of null proportion values, corresponding to which the density estimates are all consistent. With a proper choice of a threshold function on the profile likelihood ratio, the upper endpoint of this range can be shown to be a consistent estimator of the null proportion. Numerical studies show that the proposed method has an apparently convergent trend in all cases studied and performs favourably when compared with existing methods in the literature.</p>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"65 1","pages":"49-75"},"PeriodicalIF":0.8000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12383","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12383","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
A new method for estimating the proportion of null effects is proposed for solving large-scale multiple comparison problems. It utilises maximum likelihood estimation of nonparametric mixtures, which also provides a density estimate of the test statistics. It overcomes the problem of the usual nonparametric maximum likelihood estimator that cannot produce a positive probability at the location of null effects in the process of estimating nonparametrically a mixing distribution. The profile likelihood is further used to help produce a range of null proportion values, corresponding to which the density estimates are all consistent. With a proper choice of a threshold function on the profile likelihood ratio, the upper endpoint of this range can be shown to be a consistent estimator of the null proportion. Numerical studies show that the proposed method has an apparently convergent trend in all cases studied and performs favourably when compared with existing methods in the literature.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.