A deep learning-based framework to identify and characterise heterogeneous secure network traffic

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Information Security Pub Date : 2022-10-03 DOI:10.1049/ise2.12095
Faiz Ul Islam, Guangjie Liu, Weiwei Liu, Qazi Mazhar ul Haq
{"title":"A deep learning-based framework to identify and characterise heterogeneous secure network traffic","authors":"Faiz Ul Islam,&nbsp;Guangjie Liu,&nbsp;Weiwei Liu,&nbsp;Qazi Mazhar ul Haq","doi":"10.1049/ise2.12095","DOIUrl":null,"url":null,"abstract":"<p>The evergrowing diversity of encrypted and anonymous network traffic makes network management more formidable to manage the network traffic. An intelligent system is essential to analyse and identify network traffic accurately. Network management needs such techniques to improve the Quality of Service and ensure the flow of secure network traffic. However, due to the usage of non-standard ports and encryption of data payloads, the classical port-based and payload-based classification techniques fail to classify the secured network traffic. To solve the above-mentioned problems, this paper proposed an effective deep learning-based framework employed with flow-time-based features to predict heterogeneous secure network traffic best. The state-of-the-art machine learning strategies (C4.5, random forest, and K-nearest neighbour) are investigated for comparison. The proposed 1D-CNN model achieved higher accuracy in classifying the heterogeneous secure network traffic. In the next step, the proposed deep learning model characterises the major categories (virtual private network traffic, the onion router network traffic, and plain encrypted network traffic) into several application types. The experimental results show the effectiveness and feasibility of the proposed deep learning framework, which yields improved predictive power compared to the state-of-the-art machine learning techniques employed for secure network traffic analysis.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"17 2","pages":"294-308"},"PeriodicalIF":1.3000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12095","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12095","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

The evergrowing diversity of encrypted and anonymous network traffic makes network management more formidable to manage the network traffic. An intelligent system is essential to analyse and identify network traffic accurately. Network management needs such techniques to improve the Quality of Service and ensure the flow of secure network traffic. However, due to the usage of non-standard ports and encryption of data payloads, the classical port-based and payload-based classification techniques fail to classify the secured network traffic. To solve the above-mentioned problems, this paper proposed an effective deep learning-based framework employed with flow-time-based features to predict heterogeneous secure network traffic best. The state-of-the-art machine learning strategies (C4.5, random forest, and K-nearest neighbour) are investigated for comparison. The proposed 1D-CNN model achieved higher accuracy in classifying the heterogeneous secure network traffic. In the next step, the proposed deep learning model characterises the major categories (virtual private network traffic, the onion router network traffic, and plain encrypted network traffic) into several application types. The experimental results show the effectiveness and feasibility of the proposed deep learning framework, which yields improved predictive power compared to the state-of-the-art machine learning techniques employed for secure network traffic analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于深度学习的框架,用于识别和表征异构安全网络流量
加密和匿名网络流量的日益多样化使得网络管理对网络流量的管理变得更加困难。智能系统是准确分析和识别网络流量的关键。网络管理需要这样的技术来提高服务质量并确保安全网络流量的流动。然而,由于使用了非标准端口和数据有效载荷的加密,传统的基于端口和基于有效载荷的分类技术无法对安全的网络流量进行分类。为了解决上述问题,本文提出了一种有效的基于深度学习的框架,结合基于流时间的特征,对异构安全网络流量进行最佳预测。研究了最先进的机器学习策略(C4.5、随机森林和K近邻)进行比较。所提出的1D-CNN模型在对异构安全网络流量进行分类时获得了更高的精度。在下一步中,所提出的深度学习模型将主要类别(虚拟专用网络流量、洋葱路由器网络流量和纯加密网络流量)划分为几种应用程序类型。实验结果表明了所提出的深度学习框架的有效性和可行性,与用于安全网络流量分析的最先进的机器学习技术相比,该框架的预测能力有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
期刊最新文献
Functional Message Authentication Codes With Message and Function Privacy Lattice-Based CP-ABE for Optimal Broadcast Encryption With Polynomial-Depth Circuits Full-Accessible Multiparty Searchable Encryption Scheme for Shared Cloud Storage A Trust Based Anomaly Detection Scheme Using a Hybrid Deep Learning Model for IoT Routing Attacks Mitigation A Comprehensive Investigation of Anomaly Detection Methods in Deep Learning and Machine Learning: 2019–2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1