{"title":"An embedded intrusion detection and prevention system for home area networks in advanced metering infrastructure","authors":"Sahar Lazim Qaddoori, Qutaiba Ibrahim Ali","doi":"10.1049/ise2.12097","DOIUrl":null,"url":null,"abstract":"<p>With the widespread adoption of smart metres in the power sector, anomaly detection has become a critical tool for analysing customers' unusual consumption patterns and network traffic. Detecting anomalies in power consumption and communication is primarily a real-time big data analytics issue regarding data mining along with a vast number of parallel streaming data from smart metres. In this study, an embedded Intrusion Detection and Prevention System (IDPS) is proposed as a Wifi-based smart metre for Home Area Networks (HANs) in the Advanced Metering Infrastructure (AMI) network. So, the proposed system employs one machine learning model based on IDPS to guard the HAN network from various attacks that utilise the Message Queueing Telemetry Transport protocol between the smart metre and IoT sensors. Also, it uses two machine learning models to detect the abnormality in periodic and daily data metering respectively. So, multiple algorithms have been used to find the suitable algorithm for each of the three anomaly detection models. These models have been evaluated and tested using real data sets regarding resources usage and detection performance to demonstrate the efficiency and effectiveness of using machine learning algorithms in the built anomaly detection models. The experiments show that the anomaly detection models performed well for various abnormalities.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"17 3","pages":"315-334"},"PeriodicalIF":1.3000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12097","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the widespread adoption of smart metres in the power sector, anomaly detection has become a critical tool for analysing customers' unusual consumption patterns and network traffic. Detecting anomalies in power consumption and communication is primarily a real-time big data analytics issue regarding data mining along with a vast number of parallel streaming data from smart metres. In this study, an embedded Intrusion Detection and Prevention System (IDPS) is proposed as a Wifi-based smart metre for Home Area Networks (HANs) in the Advanced Metering Infrastructure (AMI) network. So, the proposed system employs one machine learning model based on IDPS to guard the HAN network from various attacks that utilise the Message Queueing Telemetry Transport protocol between the smart metre and IoT sensors. Also, it uses two machine learning models to detect the abnormality in periodic and daily data metering respectively. So, multiple algorithms have been used to find the suitable algorithm for each of the three anomaly detection models. These models have been evaluated and tested using real data sets regarding resources usage and detection performance to demonstrate the efficiency and effectiveness of using machine learning algorithms in the built anomaly detection models. The experiments show that the anomaly detection models performed well for various abnormalities.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf