Adversarial liveness detector: Leveraging adversarial perturbations in fingerprint liveness detection

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Biometrics Pub Date : 2023-03-10 DOI:10.1049/bme2.12106
Antonio Galli, Michela Gravina, Stefano Marrone, Domenico Mattiello, Carlo Sansone
{"title":"Adversarial liveness detector: Leveraging adversarial perturbations in fingerprint liveness detection","authors":"Antonio Galli,&nbsp;Michela Gravina,&nbsp;Stefano Marrone,&nbsp;Domenico Mattiello,&nbsp;Carlo Sansone","doi":"10.1049/bme2.12106","DOIUrl":null,"url":null,"abstract":"<p>The widespread use of fingerprint authentication systems (FASs) in consumer electronics opens for the development of advanced presentation attacks, that is, procedures designed to bypass a FAS using a forged fingerprint. As a consequence, FAS are often equipped with a fingerprint presentation attack detection (FPAD) module, to recognise live fingerprints from fake replicas. In this work, a novel FPAD approach based on Convolutional Neural Networks (CNNs) and on an ad hoc adversarial data augmentation strategy designed to iteratively increase the considered detector robustness is proposed. In particular, the concept of adversarial fingerprint, that is, fake fingerprints disguised by using ad hoc fingerprint adversarial perturbation algorithms was leveraged to help the detector focus only on salient portions of the fingerprints. The procedure can be adapted to different CNNs, adversarial fingerprint algorithms and fingerprint scanners, making the proposed approach versatile and easily customisable todifferent working scenarios. To test the effectiveness of the proposed approach, the authors took part in the LivDet 2021 competition, an international challenge gathering experts to compete on fingerprint liveness detection under different scanners and fake replica generation approach, achieving first place out of 23 participants in the ‘Liveness Detection in Action track’.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 2","pages":"102-111"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12106","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12106","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread use of fingerprint authentication systems (FASs) in consumer electronics opens for the development of advanced presentation attacks, that is, procedures designed to bypass a FAS using a forged fingerprint. As a consequence, FAS are often equipped with a fingerprint presentation attack detection (FPAD) module, to recognise live fingerprints from fake replicas. In this work, a novel FPAD approach based on Convolutional Neural Networks (CNNs) and on an ad hoc adversarial data augmentation strategy designed to iteratively increase the considered detector robustness is proposed. In particular, the concept of adversarial fingerprint, that is, fake fingerprints disguised by using ad hoc fingerprint adversarial perturbation algorithms was leveraged to help the detector focus only on salient portions of the fingerprints. The procedure can be adapted to different CNNs, adversarial fingerprint algorithms and fingerprint scanners, making the proposed approach versatile and easily customisable todifferent working scenarios. To test the effectiveness of the proposed approach, the authors took part in the LivDet 2021 competition, an international challenge gathering experts to compete on fingerprint liveness detection under different scanners and fake replica generation approach, achieving first place out of 23 participants in the ‘Liveness Detection in Action track’.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对抗性活体检测器:在指纹活体检测中利用对抗性扰动
指纹认证系统(FASs)在消费电子产品中的广泛使用为高级呈现攻击的发展打开了大门,即设计用于使用伪造指纹绕过指纹认证系统的程序。因此,FAS通常配备指纹呈现攻击检测(FPAD)模块,以从假复制品中识别活指纹。在这项工作中,提出了一种新的基于卷积神经网络(CNNs)和特设对抗性数据增强策略的FPAD方法,该策略旨在迭代地提高所考虑的检测器鲁棒性。特别是,对抗性指纹的概念,即通过使用特设指纹对抗性扰动算法伪装的假指纹,被用来帮助检测器只关注指纹的显著部分。该程序可适用于不同的细胞神经网络、对抗性指纹算法和指纹扫描仪,使所提出的方法具有通用性,并可轻松定制不同的工作场景。为了测试所提出方法的有效性,作者参加了LivDet 2021比赛,这是一项国际挑战赛,汇集了专家,在不同扫描仪和伪副本生成方法下进行指纹活体检测,在“活体检测行动轨迹”的23名参与者中获得第一名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
期刊最新文献
A Multimodal Biometric Recognition Method Based on Federated Learning Deep and Shallow Feature Fusion in Feature Score Level for Palmprint Recognition Research on TCN Model Based on SSARF Feature Selection in the Field of Human Behavior Recognition A Finger Vein Recognition Algorithm Based on the Histogram of Variable Curvature Directional Binary Statistics A Survey on Automatic Face Recognition Using Side-View Face Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1