Edge-centric functional network reveals new spatiotemporal biomarkers of early mild cognitive impairment

Brain-X Pub Date : 2023-10-12 DOI:10.1002/brx2.35
Weiping Wang, Ruiying Du, Zhen Wang, Xiong Luo, Haiyan Zhao, Ping Luan, Jipeng Ouyang, Song Liu
{"title":"Edge-centric functional network reveals new spatiotemporal biomarkers of early mild cognitive impairment","authors":"Weiping Wang,&nbsp;Ruiying Du,&nbsp;Zhen Wang,&nbsp;Xiong Luo,&nbsp;Haiyan Zhao,&nbsp;Ping Luan,&nbsp;Jipeng Ouyang,&nbsp;Song Liu","doi":"10.1002/brx2.35","DOIUrl":null,"url":null,"abstract":"<p>Most neuroimaging studies of the pathogenesis of early mild cognitive impairment (EMCI) rely on a node-centric network model, which only calculates correlations between brain regions. Considering the interaction of low-order correlations between pairs of brain regions, we use an edge-centric network model to study high-order functional network correlations. Here, we compute edge time series (eTS) to obtain overlapping communities and study the relationship between subnetworks and communities in space. Then, based on the overlapping communities, we calculate the normalized entropy to measure the diversity of each node. Next, we compute the high-amplitude co-fluctuation of the eTS to explore the pattern of brain activity with temporal precision. Our results show that the normal control and EMCI patients differ in brain regions, subnetworks, and the whole brain. In particular, entropy values show a gradual decrease, and brain network co-fluctuation increases with disease progression. Our study is the first to investigate the pathogenesis of EMCI from the perspective of spatiotemporal flexibility and cognitive diversity based on high-order edge connectivity, further characterizing brain dynamics and providing new insights into the search for biomarkers of EMCI.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.35","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most neuroimaging studies of the pathogenesis of early mild cognitive impairment (EMCI) rely on a node-centric network model, which only calculates correlations between brain regions. Considering the interaction of low-order correlations between pairs of brain regions, we use an edge-centric network model to study high-order functional network correlations. Here, we compute edge time series (eTS) to obtain overlapping communities and study the relationship between subnetworks and communities in space. Then, based on the overlapping communities, we calculate the normalized entropy to measure the diversity of each node. Next, we compute the high-amplitude co-fluctuation of the eTS to explore the pattern of brain activity with temporal precision. Our results show that the normal control and EMCI patients differ in brain regions, subnetworks, and the whole brain. In particular, entropy values show a gradual decrease, and brain network co-fluctuation increases with disease progression. Our study is the first to investigate the pathogenesis of EMCI from the perspective of spatiotemporal flexibility and cognitive diversity based on high-order edge connectivity, further characterizing brain dynamics and providing new insights into the search for biomarkers of EMCI.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以边缘为中心的功能网络揭示了早期轻度认知障碍的新时空生物标志物
大多数关于早期轻度认知障碍(EMCI)发病机制的神经影像学研究都依赖于以节点为中心的网络模型,该模型只计算大脑区域之间的相关性。考虑到大脑区域对之间的低阶相关性的相互作用,我们使用以边缘为中心的网络模型来研究高阶功能网络相关性。在这里,我们计算边缘时间序列(eTS)来获得重叠的社区,并研究空间中子网络和社区之间的关系。然后,基于重叠的群落,我们计算归一化熵来测量每个节点的多样性。接下来,我们计算eTS的高振幅共同波动,以探索具有时间精度的大脑活动模式。我们的研究结果表明,正常对照组和EMCI患者在大脑区域、子网络和整个大脑中存在差异。特别是,熵值逐渐降低,脑网络协同波动随着疾病进展而增加。我们的研究首次从时空灵活性和基于高阶边缘连接性的认知多样性的角度研究了EMCI的发病机制,进一步表征了大脑动力学,为寻找EMCI的生物标志物提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Research progress and applications of optoelectronic synaptic devices based on 2D materials Mechanosensitive Piezo channels and their potential roles in peripheral auditory perception Brain perfusion alterations in patients and survivors of COVID-19 infection using arterial spin labeling: A systematic review Microbiome-gut-brain axis as a novel hotspot in depression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1