{"title":"Eco-evolutionary implications for a possible contribution of cuticle hardening system in insect evolution and terrestrialisation","authors":"Tsunaki Asano, Kosei Hashimoto, R. Craig Everroad","doi":"10.1111/phen.12406","DOIUrl":null,"url":null,"abstract":"<p>Previously we proposed one aspect of how insects could adapt to terrestrial environments during their evolution. The hypothesis is based on a theory that insects have evolved an insect-specific system for cuticle formation mediated by an insect-specific enzyme. This enzyme, multicopper oxidase-2 (MCO2), catalyses the oxidation of catecholamines using molecular oxygen as the acceptor of electrons from the substrates. A potential advantage of this MCO2-mediated system is the utilization of molecular oxygen abundant in the atmosphere, which is different from the case in crustaceans (close relatives of insects) that utilize calcium ions. Accumulation of calcium ions leads to an increase in weight, but the lightweight cuticle without calcification might have been a critical factor enabling insects to evolve flight first in the history of Metazoa. Our theory also provides a simple explanation to a long-standing question of why insects are so rare in marine environments. In previous reviews, we have mainly focused on the details of the biochemical processes occurring in arthropod cuticles, but here only the essence of our theory is extracted and briefly summarized with newly added information.</p>","PeriodicalId":20081,"journal":{"name":"Physiological Entomology","volume":"48 2-3","pages":"55-60"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/phen.12406","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/phen.12406","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previously we proposed one aspect of how insects could adapt to terrestrial environments during their evolution. The hypothesis is based on a theory that insects have evolved an insect-specific system for cuticle formation mediated by an insect-specific enzyme. This enzyme, multicopper oxidase-2 (MCO2), catalyses the oxidation of catecholamines using molecular oxygen as the acceptor of electrons from the substrates. A potential advantage of this MCO2-mediated system is the utilization of molecular oxygen abundant in the atmosphere, which is different from the case in crustaceans (close relatives of insects) that utilize calcium ions. Accumulation of calcium ions leads to an increase in weight, but the lightweight cuticle without calcification might have been a critical factor enabling insects to evolve flight first in the history of Metazoa. Our theory also provides a simple explanation to a long-standing question of why insects are so rare in marine environments. In previous reviews, we have mainly focused on the details of the biochemical processes occurring in arthropod cuticles, but here only the essence of our theory is extracted and briefly summarized with newly added information.
期刊介绍:
Physiological Entomology broadly considers “how insects work” and how they are adapted to their environments at all levels from genes and molecules, anatomy and structure, to behaviour and interactions of whole organisms. We publish high quality experiment based papers reporting research on insects and other arthropods as well as occasional reviews. The journal thus has a focus on physiological and experimental approaches to understanding how insects function. The broad subject coverage of the Journal includes, but is not limited to:
-experimental analysis of behaviour-
behavioural physiology and biochemistry-
neurobiology and sensory physiology-
general physiology-
circadian rhythms and photoperiodism-
chemical ecology