{"title":"Optimized planning of chargers for electric vehicles in distribution grids including PV self-consumption and cooperative vehicle owners","authors":"Biswarup Mukherjee, Fabrizio Sossan","doi":"10.1049/enc2.12080","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a mathematical model to site and size the charging infrastructure for electric vehicles (EVs) in a distribution grid to minimize the required capital investments and maximize self-consumption of local PV generation jointly. The formulation accounts for the operational constraints of the distribution grid (nodal voltages, line currents, and transformers' ratings) and the recharging times of the EVs. It explicitly models the EV owners' flexibility in plugging and unplugging their vehicles to and from a charger to enable optimal utilization of the charging infrastructure and improve self-consumption (cooperative EV owners). The problem is formulated as a mixed-integer linear program (MILP), where nonlinear grid constraints are approximated with linearized grid models.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"4 1","pages":"36-46"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.12080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.12080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a mathematical model to site and size the charging infrastructure for electric vehicles (EVs) in a distribution grid to minimize the required capital investments and maximize self-consumption of local PV generation jointly. The formulation accounts for the operational constraints of the distribution grid (nodal voltages, line currents, and transformers' ratings) and the recharging times of the EVs. It explicitly models the EV owners' flexibility in plugging and unplugging their vehicles to and from a charger to enable optimal utilization of the charging infrastructure and improve self-consumption (cooperative EV owners). The problem is formulated as a mixed-integer linear program (MILP), where nonlinear grid constraints are approximated with linearized grid models.