Envisioning the future of learning and teaching engineering in the artificial intelligence era: Opportunities and challenges

IF 3.9 2区 工程技术 Q1 EDUCATION & EDUCATIONAL RESEARCH Journal of Engineering Education Pub Date : 2023-06-20 DOI:10.1002/jee.20539
Muhsin Menekse
{"title":"Envisioning the future of learning and teaching engineering in the artificial intelligence era: Opportunities and challenges","authors":"Muhsin Menekse","doi":"10.1002/jee.20539","DOIUrl":null,"url":null,"abstract":"Generative artificial intelligence (AI) technologies, such as large language models (LLMs) and diffusion model image and video generators, can transform learning and teaching experiences by providing students and instructors with access to a vast amount of information and create innovative learning and teaching materials in a very efficient way (e.g., U.S. Department of Education, 2023; Kasneci et al., 2023; Mollick & Mollick, 2023; Nikolic et al., 2023). For example, Google Bard and OpenAI ChatGPT are LLMs that can generate natural language texts for various purposes, such as summaries of research papers (e.g., OpenAI, 2023). At the same time, Midjourney and DeepBrain AI are diffusion models that can create diagrams (e.g., concept maps), images, and videos from textual or visual inputs. Engineering education, in particular, can benefit from integrating and utilizing generative AI technologies to improve instructional resources, develop new technology-enhanced learning environments, reduce instructors' workloads, and provide students with opportunities to design and develop their learning experiences. These technologies can help educators to create more personalized, effective, and engaging learning experiences for engineering students. Most engineering students struggle to acquire a deep understanding of complex engineering concepts because of the nature of the highly mathematical concepts, lack of prior knowledge, limitations of the large lectures, limited resources that prevent the use of commercially available lab equipment, and the lack of innovative teaching tools that could be utilized to enhance learning experiences (e.g., Menekse et al., 2018, 2022; Miller et al., 2011; Reeves & Crippen, 2021; Streveler & Menekse, 2017). These factors adversely affect retention and graduation rates and inhibit persistence in engineering majors (e.g., Estrada et al., 2016). Generative AI technologies and tools (e.g., CourseMIRROR) could support engineering educators to improve students' learning and engagement (e.g., Fan et al., 2015; Luo et al., 2015; Menekse, 2020).","PeriodicalId":50206,"journal":{"name":"Journal of Engineering Education","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Education","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jee.20539","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 2

Abstract

Generative artificial intelligence (AI) technologies, such as large language models (LLMs) and diffusion model image and video generators, can transform learning and teaching experiences by providing students and instructors with access to a vast amount of information and create innovative learning and teaching materials in a very efficient way (e.g., U.S. Department of Education, 2023; Kasneci et al., 2023; Mollick & Mollick, 2023; Nikolic et al., 2023). For example, Google Bard and OpenAI ChatGPT are LLMs that can generate natural language texts for various purposes, such as summaries of research papers (e.g., OpenAI, 2023). At the same time, Midjourney and DeepBrain AI are diffusion models that can create diagrams (e.g., concept maps), images, and videos from textual or visual inputs. Engineering education, in particular, can benefit from integrating and utilizing generative AI technologies to improve instructional resources, develop new technology-enhanced learning environments, reduce instructors' workloads, and provide students with opportunities to design and develop their learning experiences. These technologies can help educators to create more personalized, effective, and engaging learning experiences for engineering students. Most engineering students struggle to acquire a deep understanding of complex engineering concepts because of the nature of the highly mathematical concepts, lack of prior knowledge, limitations of the large lectures, limited resources that prevent the use of commercially available lab equipment, and the lack of innovative teaching tools that could be utilized to enhance learning experiences (e.g., Menekse et al., 2018, 2022; Miller et al., 2011; Reeves & Crippen, 2021; Streveler & Menekse, 2017). These factors adversely affect retention and graduation rates and inhibit persistence in engineering majors (e.g., Estrada et al., 2016). Generative AI technologies and tools (e.g., CourseMIRROR) could support engineering educators to improve students' learning and engagement (e.g., Fan et al., 2015; Luo et al., 2015; Menekse, 2020).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
展望人工智能时代工程学习与教学的未来:机遇与挑战
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineering Education
Journal of Engineering Education 工程技术-工程:综合
CiteScore
12.20
自引率
11.80%
发文量
47
审稿时长
>12 weeks
期刊介绍: The Journal of Engineering Education (JEE) serves to cultivate, disseminate, and archive scholarly research in engineering education.
期刊最新文献
Issue Information Celebrating outstanding publications and reviewers from the 2023 volume Professorial intentions of engineering PhDs from historically excluded groups: The influence of graduate school experiences Through their eyes: Understanding institutional factors that impact the transfer processes of Black engineering students An exploration of psychological safety and conflict in first-year engineering student teams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1