Cover Picture: Following Cu Microstructure Evolution in CuZnO/Al2O3(−Cs) Catalysts During Activation in H2 using in situ XRD and XRD-CT (Chem. Methods 1/2023)
Dr. Daniela M. Farmer, Dr. Simon D. M. Jacques, Dr. David Waller, Dr. Sara Boullosa Eiras, Dr. Kanak Roy, Dr. Georg Held, Prof. Gopinathan Sankar, Prof. Andrew M. Beale
{"title":"Cover Picture: Following Cu Microstructure Evolution in CuZnO/Al2O3(−Cs) Catalysts During Activation in H2 using in situ XRD and XRD-CT (Chem. Methods 1/2023)","authors":"Dr. Daniela M. Farmer, Dr. Simon D. M. Jacques, Dr. David Waller, Dr. Sara Boullosa Eiras, Dr. Kanak Roy, Dr. Georg Held, Prof. Gopinathan Sankar, Prof. Andrew M. Beale","doi":"10.1002/cmtd.202200078","DOIUrl":null,"url":null,"abstract":"<p><b>The Front Cover</b> shows how X-rays can be used to obtain spatially resolved chemical imaging insight from within an industrial catalytic reactor. Understanding how the microstructure of the active Cu<sup>0</sup> component in the commercially applicable Cu/ZnO/Al<sub>2</sub>O<sub>3</sub>(−Cs<sub>2</sub>O) low-temperature water-gas shift catalyst evolves under various H<sub>2</sub> partial pressures in the presence/absence of a Cs promoter during thermal activation has been the subject of the present investigation. More information can be found in the Research Article by Daniela M. Farmer et al..\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Front Cover shows how X-rays can be used to obtain spatially resolved chemical imaging insight from within an industrial catalytic reactor. Understanding how the microstructure of the active Cu0 component in the commercially applicable Cu/ZnO/Al2O3(−Cs2O) low-temperature water-gas shift catalyst evolves under various H2 partial pressures in the presence/absence of a Cs promoter during thermal activation has been the subject of the present investigation. More information can be found in the Research Article by Daniela M. Farmer et al..