Panpan Liu, Mengke Huang, Xiao Chen, Yan Gao, Yang Li, Cheng Dong, Ge Wang
{"title":"Polypyrrole-boosted photothermal energy storage in MOF-based phase change materials","authors":"Panpan Liu, Mengke Huang, Xiao Chen, Yan Gao, Yang Li, Cheng Dong, Ge Wang","doi":"10.1002/idm2.12092","DOIUrl":null,"url":null,"abstract":"<p>Infiltrating phase change materials (PCMs) into nanoporous metal–organic frameworks (MOFs) is accepted as a cutting-edge thermal energy storage concept. However, weak photon capture capability of pristine MOF-based composite PCMs is a stumbling block in solar energy utilization. Towards this goal, we prepared advanced high-performance pristine MOF-based photothermal composite PCMs by simultaneously integrating photon absorber guest (polypyrrole [PPy]) and thermal storage guest (1-octadecanol [ODA]) into an MOF host (Cr-MIL-101-NH<sub>2</sub>). The coated PPy layer on the surface of ODA@MOF not only serves as a photon harvester, but also serves as a phonon enhancer. Resultantly, ODA@MOF/PPy composite PCMs exhibit intense and broadband light absorption characteristic in the ultraviolet–visible–near-infrared region, and higher heat transfer ability than ODA@MOF. Importantly, the photothermal conversion and storage efficiency of ODA@MOF/PPy-6% is up to 88.3%. Additionally, our developed MOF-based photothermal composite PCMs also exhibit long-standing antileakage stability, energy storage stability, and photothermal conversion stability. The proposed coating strategy and in-depth understanding mechanism are expected to facilitate the development of high-efficiency MOF-based photothermal composite PCMs in solar energy utilization.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"2 3","pages":"423-433"},"PeriodicalIF":24.5000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12092","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Infiltrating phase change materials (PCMs) into nanoporous metal–organic frameworks (MOFs) is accepted as a cutting-edge thermal energy storage concept. However, weak photon capture capability of pristine MOF-based composite PCMs is a stumbling block in solar energy utilization. Towards this goal, we prepared advanced high-performance pristine MOF-based photothermal composite PCMs by simultaneously integrating photon absorber guest (polypyrrole [PPy]) and thermal storage guest (1-octadecanol [ODA]) into an MOF host (Cr-MIL-101-NH2). The coated PPy layer on the surface of ODA@MOF not only serves as a photon harvester, but also serves as a phonon enhancer. Resultantly, ODA@MOF/PPy composite PCMs exhibit intense and broadband light absorption characteristic in the ultraviolet–visible–near-infrared region, and higher heat transfer ability than ODA@MOF. Importantly, the photothermal conversion and storage efficiency of ODA@MOF/PPy-6% is up to 88.3%. Additionally, our developed MOF-based photothermal composite PCMs also exhibit long-standing antileakage stability, energy storage stability, and photothermal conversion stability. The proposed coating strategy and in-depth understanding mechanism are expected to facilitate the development of high-efficiency MOF-based photothermal composite PCMs in solar energy utilization.