Modelling past and future land-use changes from mining, agriculture, industry and biodiversity in a rapidly developing Southeast Asian region 采矿、农业、工业和生物多样性保护影响下东南亚快速发展区域过去和未来土地利用变化模拟

Sharun Beream Nasir, Michelle Li Ern Ang, Tapan Kumar Nath, John Owen, Angela Tritto, Alex M. Lechner
{"title":"Modelling past and future land-use changes from mining, agriculture, industry and biodiversity in a rapidly developing Southeast Asian region\n 采矿、农业、工业和生物多样性保护影响下东南亚快速发展区域过去和未来土地利用变化模拟","authors":"Sharun Beream Nasir,&nbsp;Michelle Li Ern Ang,&nbsp;Tapan Kumar Nath,&nbsp;John Owen,&nbsp;Angela Tritto,&nbsp;Alex M. Lechner","doi":"10.1002/inc3.17","DOIUrl":null,"url":null,"abstract":"<p>Rapidly developing regions in Southeast Asia, such as Kuantan, Malaysia, require robust spatial analysis to understand changing landscape patterns and their socioenvironmental impacts to guide sustainable development and conservation planning. This study aims to characterise and evaluate the historic and future projections of land-use and land-cover (LULC) change patterns to understand the dynamics of the regional development process and identify potential future land-use conflicts. We first map coarse-scale land-cover classes using Landsat 5 TM and Landsat 8 OLI data and a Random Forest classifier in the Google Earth Engine platform, and then use auxiliary reference data to manually construct fine-scale LULC for 3 years: 2010, 2015 and 2020. Subsequently, we modelled future LULC change patterns in 2030 using Land Change Modeller, which applies a multilayer perceptron neural network and Markov chain analysis. The study showed that the region's land cover in the last 10 years has been largely altered by human intervention, driven by an increase in oil palm plantations, followed by mining, residential and industrial site expansion, with a consequent decline in forest and vegetation cover. The 2030 land-use projections revealed a continuation of these land-use development patterns. The modelling showed that industry, mining and residential LULC are clustered and growing closer in proximity while expanding extensively, likely causing future land-use conflict and lead to further environmental degradation. Furthermore, our analysis showed extensive decline in forest cover within reserves. Our modelling demonstrated that natural resource management needs to take an integrated approach as the drivers of land-use changes are complex, competing and dynamic.</p>","PeriodicalId":100680,"journal":{"name":"Integrative Conservation","volume":"2 1","pages":"43-61"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inc3.17","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Conservation","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inc3.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rapidly developing regions in Southeast Asia, such as Kuantan, Malaysia, require robust spatial analysis to understand changing landscape patterns and their socioenvironmental impacts to guide sustainable development and conservation planning. This study aims to characterise and evaluate the historic and future projections of land-use and land-cover (LULC) change patterns to understand the dynamics of the regional development process and identify potential future land-use conflicts. We first map coarse-scale land-cover classes using Landsat 5 TM and Landsat 8 OLI data and a Random Forest classifier in the Google Earth Engine platform, and then use auxiliary reference data to manually construct fine-scale LULC for 3 years: 2010, 2015 and 2020. Subsequently, we modelled future LULC change patterns in 2030 using Land Change Modeller, which applies a multilayer perceptron neural network and Markov chain analysis. The study showed that the region's land cover in the last 10 years has been largely altered by human intervention, driven by an increase in oil palm plantations, followed by mining, residential and industrial site expansion, with a consequent decline in forest and vegetation cover. The 2030 land-use projections revealed a continuation of these land-use development patterns. The modelling showed that industry, mining and residential LULC are clustered and growing closer in proximity while expanding extensively, likely causing future land-use conflict and lead to further environmental degradation. Furthermore, our analysis showed extensive decline in forest cover within reserves. Our modelling demonstrated that natural resource management needs to take an integrated approach as the drivers of land-use changes are complex, competing and dynamic.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling past and future land use changes from mining, agriculture, industry, and biodiversity in a rapidly developing Southeast Asian region
东南亚快速发展的地区,如马来西亚关丹,需要进行强有力的空间分析,以了解不断变化的景观模式及其社会环境影响,从而指导可持续发展和保护规划。本研究旨在描述和评估土地利用和土地覆盖变化模式的历史和未来预测,以了解区域发展进程的动态,并确定未来潜在的土地利用冲突。我们首先使用Landsat 5 TM和Landsat 8 OLI数据以及Google Earth Engine平台中的随机森林分类器绘制粗尺度土地覆盖类别,然后使用辅助参考数据手动构建3 年份:2010年、2015年和2020年。随后,我们使用土地变化建模器对2030年未来的LULC变化模式进行了建模,该建模器应用了多层感知器神经网络和马尔可夫链分析。研究表明,该地区在过去10年中的土地覆盖率 人类的干预在很大程度上改变了这几年,油棕榈种植园的增加,随之而来的是采矿、住宅和工业场地的扩张,森林和植被覆盖率随之下降。2030年的土地利用预测显示了这些土地利用发展模式的延续。模型显示,工业、采矿和住宅LULC聚集在一起,并且越来越近,同时广泛扩张,可能会导致未来的土地使用冲突,并导致环境进一步恶化。此外,我们的分析显示,保护区内的森林覆盖率大幅下降。我们的模型表明,自然资源管理需要采取综合方法,因为土地使用变化的驱动因素是复杂、竞争和动态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information The Two Faces of Introgression in Conservation Biology 基因渗入在保育生物学中的双重面貌 Rare Records of Tropical Spiders Preying on Vertebrates in Southwest China 热带地区罕见的蜘蛛捕食脊椎动物记录:来自中国西南部的四例观察 Can Distance Sampling be Used to Estimate the Abundance of Mountain Ungulates? A Comparison of Distance Sampling and Double-Observer Survey Methods 距离样线法能用于估算山地有蹄类动物的数量吗?——距离样线法与双观察者法的比较 Staghorn Ferns in Botanical Gardens: Which Species Do We Really Cultivate or Trade? 植物园中的鹿角蕨:我们真正保育或买卖的是什么?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1