{"title":"A systematic mapping study on machine learning methodologies for requirements management","authors":"Chi Xu, Yuanbang Li, Bangchao Wang, Shi Dong","doi":"10.1049/sfw2.12082","DOIUrl":null,"url":null,"abstract":"<p>Requirements management (RM) plays an important role in requirements engineering. The development of machine learning (ML) is in full swing, and many ML software management techniques had been used to improve the performance of RM methods. However, as no research study is known that exists systematically to summarise the ML methods used in RM. To fill this gap, this paper adopts the systematic mapping study to survey the state-of-the-art ML methods for RM primary studies and were finally selected in this mapping, which was published on 36 conferences and journals. The 24 factors affecting the ML method of RM are determined, of which 9, 11 and 4 are the three parts of RM, namely requirements baseline maintenance, requirements traceability and requirements change management separately. The 18 objectives of the ML method for RM are summarised, of which 6, 7 and 5 are the three parts of RM. The eight ML methods used in RM and their time sequence are summarised. The 18 evaluation indexes for RM in the ML method are determined, and the performance of these methods on these parameters is analysed. The research direction of this paper is of great significance to the research of researchers in demand management.</p>","PeriodicalId":50378,"journal":{"name":"IET Software","volume":"17 4","pages":"405-423"},"PeriodicalIF":1.5000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sfw2.12082","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sfw2.12082","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Requirements management (RM) plays an important role in requirements engineering. The development of machine learning (ML) is in full swing, and many ML software management techniques had been used to improve the performance of RM methods. However, as no research study is known that exists systematically to summarise the ML methods used in RM. To fill this gap, this paper adopts the systematic mapping study to survey the state-of-the-art ML methods for RM primary studies and were finally selected in this mapping, which was published on 36 conferences and journals. The 24 factors affecting the ML method of RM are determined, of which 9, 11 and 4 are the three parts of RM, namely requirements baseline maintenance, requirements traceability and requirements change management separately. The 18 objectives of the ML method for RM are summarised, of which 6, 7 and 5 are the three parts of RM. The eight ML methods used in RM and their time sequence are summarised. The 18 evaluation indexes for RM in the ML method are determined, and the performance of these methods on these parameters is analysed. The research direction of this paper is of great significance to the research of researchers in demand management.
期刊介绍:
IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application.
Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome:
Software and systems requirements engineering
Formal methods, design methods, practice and experience
Software architecture, aspect and object orientation, reuse and re-engineering
Testing, verification and validation techniques
Software dependability and measurement
Human systems engineering and human-computer interaction
Knowledge engineering; expert and knowledge-based systems, intelligent agents
Information systems engineering
Application of software engineering in industry and commerce
Software engineering technology transfer
Management of software development
Theoretical aspects of software development
Machine learning
Big data and big code
Cloud computing
Current Special Issue. Call for papers:
Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf
Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf