Bionic surface diode for droplet steering

Droplet Pub Date : 2023-02-09 DOI:10.1002/dro2.46
Xiaolong Yang, Biao Qi, Yao Lu, Wang Zhang, Xiaolei Wang
{"title":"Bionic surface diode for droplet steering","authors":"Xiaolong Yang,&nbsp;Biao Qi,&nbsp;Yao Lu,&nbsp;Wang Zhang,&nbsp;Xiaolei Wang","doi":"10.1002/dro2.46","DOIUrl":null,"url":null,"abstract":"<p>Control of droplet sliding and its interfacial behavior such as sliding resistance and friction have important applications in microfluidic and energy-related fields. Nature provides many examples of interface-driven droplet sliding control; yet, to date, the continuous governing of the multiphase process and precise steering of droplet sliding remain challenging. Here, directional-dependent ultraslippery patterned surfaces with significant droplet sliding anisotropy were created by coordinating the heterogeneous wettability of the back of the dessert beetle, directional-dependent architecture of the butterfly wing, and ultraslippery configuration of the <i>Nepenthes alata</i>. Analysis of the sliding resistance on typical ultraslippery patterned surfaces reveals that the directional-dependent triple phase line (TPL) immigration on the ultraslippery patterns dominates the strong sliding anisotropy, which can be modeled using the classic Furmidge equation. In particular, the sliding anisotropy for the semicircular ultraslippery patterned surface shows threefold higher than that of natural butterfly wings due to the most significant difference in TPL immigration in two opposite directions, which enables the simultaneous handling of multiple droplets without mass loss and steering of droplet sliding/friction. This work may transform the design space for the control of multiphase interface motion and the development of new lab-on-a-chip and droplet-based microsystems.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.46","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Control of droplet sliding and its interfacial behavior such as sliding resistance and friction have important applications in microfluidic and energy-related fields. Nature provides many examples of interface-driven droplet sliding control; yet, to date, the continuous governing of the multiphase process and precise steering of droplet sliding remain challenging. Here, directional-dependent ultraslippery patterned surfaces with significant droplet sliding anisotropy were created by coordinating the heterogeneous wettability of the back of the dessert beetle, directional-dependent architecture of the butterfly wing, and ultraslippery configuration of the Nepenthes alata. Analysis of the sliding resistance on typical ultraslippery patterned surfaces reveals that the directional-dependent triple phase line (TPL) immigration on the ultraslippery patterns dominates the strong sliding anisotropy, which can be modeled using the classic Furmidge equation. In particular, the sliding anisotropy for the semicircular ultraslippery patterned surface shows threefold higher than that of natural butterfly wings due to the most significant difference in TPL immigration in two opposite directions, which enables the simultaneous handling of multiple droplets without mass loss and steering of droplet sliding/friction. This work may transform the design space for the control of multiphase interface motion and the development of new lab-on-a-chip and droplet-based microsystems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于液滴操纵的仿生表面二极管
液滴滑动及其界面行为(如滑动阻力和摩擦)的控制在微流体和能量相关领域具有重要应用。Nature提供了许多界面驱动液滴滑动控制的例子;然而,到目前为止,多相过程的连续控制和液滴滑动的精确控制仍然具有挑战性。在这里,通过协调甜点甲虫背部的不均匀润湿性、蝴蝶翅膀的方向依赖性结构和有尾猪笼草的超唇形构型,创造了具有显著液滴滑动各向异性的方向依赖型超唇形图案表面。对典型的超滑移图案表面的滑动阻力分析表明,超滑移图案上的方向相关三相线(TPL)迁移主导了强滑动各向异性,这可以使用经典的Furmidge方程进行建模。特别是,由于TPL在两个相反方向上的迁移差异最大,半圆形超光滑图案表面的滑动各向异性比天然蝴蝶翅膀高出三倍,这使得能够同时处理多个液滴,而不会造成质量损失和液滴滑动/摩擦。这项工作可能会改变控制多相界面运动的设计空间,以及开发新的芯片实验室和基于液滴的微系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Front Cover, Volume 3, Number 4, October 2024 Inside Back Cover, Volume 3, Number 4, October 2024 Back Cover, Volume 3, Number 4, October 2024 Inside Front Cover, Volume 3, Number 4, October 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1