Enze Tian, Jun Liu, Yilun Gao, Jinhan Mo, Shaolin Zhang, Xuedong Bai, Kehai Liu, Guiyin Xu, Kaihui Liu
{"title":"Artificial polydopamine interface for high-performance ambient particulate matter removal at large velocity","authors":"Enze Tian, Jun Liu, Yilun Gao, Jinhan Mo, Shaolin Zhang, Xuedong Bai, Kehai Liu, Guiyin Xu, Kaihui Liu","doi":"10.1002/cnl2.52","DOIUrl":null,"url":null,"abstract":"<p>Ambient particulate matter (PM) has been identified as the fourth-ranking risk factor for mortality globally, and efficient ventilation filtration technologies are urgently needed. In most previous trials, however, high filtration efficiency was achieved either at a low face air velocity or at a large pressure drop cost. Here, nine coarse filters with in situ polydopamine (PDA) coatings were reported, which significantly improved the efficiency-pressure drop-energy consumption performance. By optimizing the filter substrate and synergistically modulating the electric fields, the artificial PDA coarse filter showed a high filtration efficiency of 96.9% for 0.3–0.5 μm particles, and a low pressure drop of 9.2 Pa at 1 m/s air velocity. At an extremely large air velocity of 4 m/s, the filtration efficiency remained as high as 94.3% for 1–3 μm particles. This work offers the engineering application opportunity for high-air-velocity filtration, paving the way to a safe, healthy, and energy-saving environment.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.52","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ambient particulate matter (PM) has been identified as the fourth-ranking risk factor for mortality globally, and efficient ventilation filtration technologies are urgently needed. In most previous trials, however, high filtration efficiency was achieved either at a low face air velocity or at a large pressure drop cost. Here, nine coarse filters with in situ polydopamine (PDA) coatings were reported, which significantly improved the efficiency-pressure drop-energy consumption performance. By optimizing the filter substrate and synergistically modulating the electric fields, the artificial PDA coarse filter showed a high filtration efficiency of 96.9% for 0.3–0.5 μm particles, and a low pressure drop of 9.2 Pa at 1 m/s air velocity. At an extremely large air velocity of 4 m/s, the filtration efficiency remained as high as 94.3% for 1–3 μm particles. This work offers the engineering application opportunity for high-air-velocity filtration, paving the way to a safe, healthy, and energy-saving environment.