{"title":"Between-partner concordance of vertically transmitted gut microbiota diminishes reproductive output in the dung beetle Onthophagus taurus","authors":"Anna L. M. Macagno, Armin P. Moczek","doi":"10.1111/phen.12398","DOIUrl":null,"url":null,"abstract":"<p>In this study, we explored the potential contribution of the gut microbiome to reproductive isolation in tunnelling dung beetles, using <i>Onthophagus taurus</i> (Schreber, 1759) and its sister species <i>O. illyricus</i> (Scopoli, 1763) as a model system (Coleoptera: Scarabaeidae: Scarabaeinae: Onthophagini). Gut microbiota play critical roles in normative development of these beetles, and are vertically inherited via a maternally derived faecal pellet called the <i>pedestal</i>. We first compared the developmental outcomes of individuals reared with pedestals derived from either the same or the sister species (<i>Self</i> and <i>Cross</i> inoculation treatments, respectively). We then crossed the resulting adult <i>O. taurus</i> in three combinations (<i>Self</i> female X <i>Self</i> male; <i>Self</i> female X <i>Cross</i> male; <i>Cross</i> female X <i>Self</i> male). We predicted that if the vertically transmitted gut microbiome plays a role in reproductive isolation by facilitating species recognition, the <i>Self</i> X <i>Self</i> line would have improved reproductive outcomes compared to the lines in which partners had mismatched gut microbiomes. Instead, we found that between-partner concordance of maternally transmitted gut microbiota resulted in fewer offspring, and that this reduction was due to partial pre-copulatory isolation as evidenced by reduced sperm transfer in the <i>Self</i> X <i>Self</i> line. This pattern is consistent either with microbiome-mediated familiarity/kin recognition, or with absence of mate choice in crosses with mismatched microbiomes. We discuss our results in the light of recent research on the influence of extracellular microbial symbionts over insects' mating preferences.</p>","PeriodicalId":20081,"journal":{"name":"Physiological Entomology","volume":"48 1","pages":"14-23"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/phen.12398","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/phen.12398","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, we explored the potential contribution of the gut microbiome to reproductive isolation in tunnelling dung beetles, using Onthophagus taurus (Schreber, 1759) and its sister species O. illyricus (Scopoli, 1763) as a model system (Coleoptera: Scarabaeidae: Scarabaeinae: Onthophagini). Gut microbiota play critical roles in normative development of these beetles, and are vertically inherited via a maternally derived faecal pellet called the pedestal. We first compared the developmental outcomes of individuals reared with pedestals derived from either the same or the sister species (Self and Cross inoculation treatments, respectively). We then crossed the resulting adult O. taurus in three combinations (Self female X Self male; Self female X Cross male; Cross female X Self male). We predicted that if the vertically transmitted gut microbiome plays a role in reproductive isolation by facilitating species recognition, the Self X Self line would have improved reproductive outcomes compared to the lines in which partners had mismatched gut microbiomes. Instead, we found that between-partner concordance of maternally transmitted gut microbiota resulted in fewer offspring, and that this reduction was due to partial pre-copulatory isolation as evidenced by reduced sperm transfer in the Self X Self line. This pattern is consistent either with microbiome-mediated familiarity/kin recognition, or with absence of mate choice in crosses with mismatched microbiomes. We discuss our results in the light of recent research on the influence of extracellular microbial symbionts over insects' mating preferences.
期刊介绍:
Physiological Entomology broadly considers “how insects work” and how they are adapted to their environments at all levels from genes and molecules, anatomy and structure, to behaviour and interactions of whole organisms. We publish high quality experiment based papers reporting research on insects and other arthropods as well as occasional reviews. The journal thus has a focus on physiological and experimental approaches to understanding how insects function. The broad subject coverage of the Journal includes, but is not limited to:
-experimental analysis of behaviour-
behavioural physiology and biochemistry-
neurobiology and sensory physiology-
general physiology-
circadian rhythms and photoperiodism-
chemical ecology