Forearm multimodal recognition based on IAHP-entropy weight combination

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Biometrics Pub Date : 2022-05-27 DOI:10.1049/bme2.12080
Chaoying Tang, Mengen Qian, Ru Jia, Haodong Liu, Biao Wang
{"title":"Forearm multimodal recognition based on IAHP-entropy weight combination","authors":"Chaoying Tang,&nbsp;Mengen Qian,&nbsp;Ru Jia,&nbsp;Haodong Liu,&nbsp;Biao Wang","doi":"10.1049/bme2.12080","DOIUrl":null,"url":null,"abstract":"<p>Biometrics are the among most popular authentication methods due to their advantages over traditional methods, such as higher security, better accuracy and more convenience. The recent COVID-19 pandemic has led to the wide use of face masks, which greatly affects the traditional face recognition technology. The pandemic has also increased the focus on hygienic and contactless identity verification methods. The forearm is a new biometric that contains discriminative information. In this paper, we proposed a multimodal recognition method that combines the veins and geometry of a forearm. Five features are extracted from a forearm Near-Infrared (Near-Infrared) image: SURF, local line structures, global graph representations, forearm width feature and forearm boundary feature. These features are matched individually and then fused at the score level based on the Improved Analytic Hierarchy Process-entropy weight combination. Comprehensive experiments were carried out to evaluate the proposed recognition method and the fusion rule. The matching results showed that the proposed method can achieve a satisfactory performance.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 1","pages":"52-63"},"PeriodicalIF":1.8000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12080","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Biometrics are the among most popular authentication methods due to their advantages over traditional methods, such as higher security, better accuracy and more convenience. The recent COVID-19 pandemic has led to the wide use of face masks, which greatly affects the traditional face recognition technology. The pandemic has also increased the focus on hygienic and contactless identity verification methods. The forearm is a new biometric that contains discriminative information. In this paper, we proposed a multimodal recognition method that combines the veins and geometry of a forearm. Five features are extracted from a forearm Near-Infrared (Near-Infrared) image: SURF, local line structures, global graph representations, forearm width feature and forearm boundary feature. These features are matched individually and then fused at the score level based on the Improved Analytic Hierarchy Process-entropy weight combination. Comprehensive experiments were carried out to evaluate the proposed recognition method and the fusion rule. The matching results showed that the proposed method can achieve a satisfactory performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于IAHP熵权组合的前臂多模态识别
生物识别是最受欢迎的身份验证方法之一,因为它比传统方法具有更高的安全性、更好的准确性和更方便等优点。最近的新冠肺炎大流行导致口罩的广泛使用,这对传统的人脸识别技术产生了很大影响。新冠疫情还增加了对卫生和非接触式身份验证方法的关注。前臂是一种新的生物特征,它包含有判别信息。在本文中,我们提出了一种结合前臂静脉和几何形状的多模式识别方法。从前臂近红外图像中提取了五个特征:SURF、局部线结构、全局图表示、前臂宽度特征和前臂边界特征。这些特征被单独匹配,然后基于改进的层次分析过程熵权组合在分数水平上融合。对所提出的识别方法和融合规则进行了综合实验评价。匹配结果表明,该方法可以获得令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
期刊最新文献
Facial and Neck Region Analysis for Deepfake Detection Using Remote Photoplethysmography Signal Similarity A Multimodal Biometric Recognition Method Based on Federated Learning Deep and Shallow Feature Fusion in Feature Score Level for Palmprint Recognition Research on TCN Model Based on SSARF Feature Selection in the Field of Human Behavior Recognition A Finger Vein Recognition Algorithm Based on the Histogram of Variable Curvature Directional Binary Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1