{"title":"Development and deployment of a long-term aquatic eddy covariance system","authors":"Jeff Coogan, Matthew H. Long","doi":"10.1002/lom3.10564","DOIUrl":null,"url":null,"abstract":"<p>The aquatic eddy covariance (AEC) technique is a versatile tool for understanding benthic fluxes, and calculating primary production, respiration, and net ecosystem metabolism rates of benthic communities. A limitation for researchers has been the length of deployments where the major constraints have primarily been sensor breakage and degradation over time and battery consumption. This paper evaluates the design and deployment of a long-term eddy covariance system (LECS) that was deployed in a temperate seagrass meadow for 6 months that resulted in reliable data 79% of the time. The system consisted of a fixed bottom lander that measured the AEC and a surface buoy that transmitted real time data and provided solar power. This study found a gradual reduction in sensor response time, likely due to fouling, that reduced the response time from 1 to 22 s and resulted in a normalized root square mean error of 8% when comparing the LECS with a second short-term AEC system. New spectral analysis techniques allow for these changes in sensor response time to be monitored in real time so the sensor can be replaced or cleaned as needed. This ensures future deployments will be able to collect high-quality data and allow for long-term analyses of benthic fluxes using the new technology and analyses of the presented LECS.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"21 9","pages":"552-562"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10564","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10564","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The aquatic eddy covariance (AEC) technique is a versatile tool for understanding benthic fluxes, and calculating primary production, respiration, and net ecosystem metabolism rates of benthic communities. A limitation for researchers has been the length of deployments where the major constraints have primarily been sensor breakage and degradation over time and battery consumption. This paper evaluates the design and deployment of a long-term eddy covariance system (LECS) that was deployed in a temperate seagrass meadow for 6 months that resulted in reliable data 79% of the time. The system consisted of a fixed bottom lander that measured the AEC and a surface buoy that transmitted real time data and provided solar power. This study found a gradual reduction in sensor response time, likely due to fouling, that reduced the response time from 1 to 22 s and resulted in a normalized root square mean error of 8% when comparing the LECS with a second short-term AEC system. New spectral analysis techniques allow for these changes in sensor response time to be monitored in real time so the sensor can be replaced or cleaned as needed. This ensures future deployments will be able to collect high-quality data and allow for long-term analyses of benthic fluxes using the new technology and analyses of the presented LECS.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.