Generation of synthetic multi-resolution time series load data

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Smart Grid Pub Date : 2023-06-29 DOI:10.1049/stg2.12116
Andrea Pinceti, Lalitha Sankar, Oliver Kosut
{"title":"Generation of synthetic multi-resolution time series load data","authors":"Andrea Pinceti,&nbsp;Lalitha Sankar,&nbsp;Oliver Kosut","doi":"10.1049/stg2.12116","DOIUrl":null,"url":null,"abstract":"<p>The availability of large datasets is crucial for the development of new power system applications and tools; unfortunately, very few are publicly and freely available. The authors designed an end-to-end generative framework for the creation of synthetic bus-level time-series load data for transmission networks. The model is trained on a real dataset of over 70 Terabytes of synchrophasor measurements spanning multiple years. Leveraging a combination of principal component analysis and conditional generative adversarial network models, the developed scheme allows for the generation of data at varying sampling rates (up to a maximum of 30 samples per second) and ranging in length from seconds to years. The generative models are tested extensively to verify that they correctly capture the diverse characteristics of real loads. Finally, an opensource tool called LoadGAN is developed which gives researchers access to the fully trained generative models via a graphical interface.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"6 5","pages":"492-502"},"PeriodicalIF":2.4000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12116","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

The availability of large datasets is crucial for the development of new power system applications and tools; unfortunately, very few are publicly and freely available. The authors designed an end-to-end generative framework for the creation of synthetic bus-level time-series load data for transmission networks. The model is trained on a real dataset of over 70 Terabytes of synchrophasor measurements spanning multiple years. Leveraging a combination of principal component analysis and conditional generative adversarial network models, the developed scheme allows for the generation of data at varying sampling rates (up to a maximum of 30 samples per second) and ranging in length from seconds to years. The generative models are tested extensively to verify that they correctly capture the diverse characteristics of real loads. Finally, an opensource tool called LoadGAN is developed which gives researchers access to the fully trained generative models via a graphical interface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成多分辨率时间序列负荷数据的生成
大型数据集的可用性对于开发新的电力系统应用程序和工具至关重要;不幸的是,很少有公开和免费的。作者设计了一个端到端的生成框架,用于创建传输网络的合成总线级时间序列负载数据。该模型是在跨越多年的同步相量测量超过70兆字节的真实数据集上训练的。利用主成分分析和条件生成对抗性网络模型的组合,所开发的方案允许以不同的采样率(每秒最多30个样本)生成数据,长度从几秒到几年不等。生成模型经过了广泛的测试,以验证它们是否正确地捕捉到了实际负载的不同特征。最后,开发了一个名为LoadGAN的开源工具,使研究人员能够通过图形界面访问经过充分训练的生成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Smart Grid
IET Smart Grid Computer Science-Computer Networks and Communications
CiteScore
6.70
自引率
4.30%
发文量
41
审稿时长
29 weeks
期刊最新文献
Incentivising peers in local transactive energy markets: A case study for consumers, prosumers and prosumagers Comprehensive review on dynamic state estimation techniques with cybersecurity applications Guest Editorial: Energy storage for green transition of electrical grids A deep learning based communication traffic prediction approach for smart monitoring of distributed energy resources in virtual power plants Guest Editorial: Planning and operation of integrated energy systems for decarbonisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1