Transcriptomics-guided identification of an algicidal protease of the marine bacterium Kordia algicida OT-1

IF 3.9 3区 生物学 Q2 MICROBIOLOGY MicrobiologyOpen Pub Date : 2023-10-10 DOI:10.1002/mbo3.1387
Kristy S. Syhapanha, David A. Russo, Yun Deng, Nils Meyer, Remington X. Poulin, Georg Pohnert
{"title":"Transcriptomics-guided identification of an algicidal protease of the marine bacterium Kordia algicida OT-1","authors":"Kristy S. Syhapanha,&nbsp;David A. Russo,&nbsp;Yun Deng,&nbsp;Nils Meyer,&nbsp;Remington X. Poulin,&nbsp;Georg Pohnert","doi":"10.1002/mbo3.1387","DOIUrl":null,"url":null,"abstract":"<p>In recent years, interest in algicidal bacteria has risen due to their ecological importance and their potential as biotic regulators of harmful algal blooms. Algicidal bacteria shape the plankton communities of the oceans by inhibiting or lysing microalgae and by consuming the released nutrients. <i>Kordia algicida</i> strain OT-1 is a model marine algicidal bacterium that was isolated from a bloom of the diatom <i>Skeletonema costatum</i>. Previous work has suggested that algicidal activity is mediated by secreted proteases. Here, we utilize a transcriptomics-guided approach to identify the serine protease gene <i>KAOT1_RS09515</i>, hereby named <i>alpA1</i> as a key element in the algicidal activity of <i>K. algicida</i>. The protease AlpA1 was expressed and purified from a heterologous host and used in in vitro bioassays to validate its activity. We also show that <i>K. algicida</i> is the only algicidal species within a group of four members of the <i>Kordia</i> genus. The identification of this algicidal protease opens the possibility of real-time monitoring of the ecological impact of algicidal bacteria in natural phytoplankton blooms.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1387","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1387","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, interest in algicidal bacteria has risen due to their ecological importance and their potential as biotic regulators of harmful algal blooms. Algicidal bacteria shape the plankton communities of the oceans by inhibiting or lysing microalgae and by consuming the released nutrients. Kordia algicida strain OT-1 is a model marine algicidal bacterium that was isolated from a bloom of the diatom Skeletonema costatum. Previous work has suggested that algicidal activity is mediated by secreted proteases. Here, we utilize a transcriptomics-guided approach to identify the serine protease gene KAOT1_RS09515, hereby named alpA1 as a key element in the algicidal activity of K. algicida. The protease AlpA1 was expressed and purified from a heterologous host and used in in vitro bioassays to validate its activity. We also show that K. algicida is the only algicidal species within a group of four members of the Kordia genus. The identification of this algicidal protease opens the possibility of real-time monitoring of the ecological impact of algicidal bacteria in natural phytoplankton blooms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录组学引导鉴定海洋细菌褐藻Kordia algicida OT-1的一种杀藻蛋白酶
近年来,由于杀藻细菌的生态重要性及其作为有害藻华生物调节剂的潜力,人们对其的兴趣日益高涨。杀藻细菌通过抑制或溶解微藻以及消耗释放的营养物质来塑造海洋中的浮游生物群落。褐藻Kordia菌株OT-1是从硅藻中分离得到的一种模式海洋杀藻细菌。先前的研究表明,杀藻活性是由分泌的蛋白酶介导的。在这里,我们利用转录组学引导的方法来鉴定丝氨酸蛋白酶基因KAOT1_RS09515,该基因被命名为alpA1,是褐藻毒素杀藻活性的关键元件。蛋白酶AlpA1从异源宿主中表达和纯化,并用于体外生物测定以验证其活性。我们还表明,褐藻是Kordia属四个成员中唯一的杀藻物种。这种杀藻蛋白酶的鉴定为实时监测杀藻细菌在天然浮游植物水华中的生态影响开辟了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MicrobiologyOpen
MicrobiologyOpen MICROBIOLOGY-
CiteScore
8.00
自引率
0.00%
发文量
78
审稿时长
20 weeks
期刊介绍: MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era. The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes. MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to: - agriculture - antimicrobial resistance - astrobiology - biochemistry - biotechnology - cell and molecular biology - clinical microbiology - computational, systems, and synthetic microbiology - environmental science - evolutionary biology, ecology, and systematics - food science and technology - genetics and genomics - geobiology and earth science - host-microbe interactions - infectious diseases - natural products discovery - pharmaceutical and medicinal chemistry - physiology - plant pathology - veterinary microbiology We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses. The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations. MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.
期刊最新文献
Issue Information Vitamin B12 as a source of variability in isotope effects for chloroform biotransformation by Dehalobacter Extraction of high-molecular-weight DNA from Streptococcus spp. for nanopore sequencing in resource-limited settings Differential association of key bacterial groups with diatoms and Phaeocystis spp. during spring blooms in the Southern Ocean Exploring the resilience and stability of a defined human gut microbiota consortium: An isothermal microcalorimetric study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1