{"title":"An effective electrocardiogram segments denoising method combined with ensemble empirical mode decomposition, empirical mode decomposition, and wavelet packet","authors":"Yaru Yue, Chengdong Chen, Xiaoyuan Wu, Xiaoguang Zhou","doi":"10.1049/sil2.12232","DOIUrl":null,"url":null,"abstract":"<p>Electrocardiogram (ECG) is the most extensively applied diagnostic approach for heart diseases. However, an ECG signal is a weak bioelectrical signal and is easily disturbed by baseline wander, powerline interference, and muscle artefacts, which make detection of heart diseases more difficult. Therefore, it is very important to denoise the contaminated ECG signal in practical application. In this article, an effective ECG segments denoising method combining the ensemble empirical mode decomposition (EEMD), empirical mode decomposition (EMD), and wavelet packet (WP) is designed. The ECG signal is decomposed using the EEMD for the first time, and then the highest frequency component is decomposed by the EMD for the second time, and the high frequency components obtained from the second time are decomposed and reconstructed by the WP for the third time. Finally, the processed signal components are fused to obtain the denoised ECG signal. Furthermore, the signal-to-noise ratio (SNR), mean square error (MSE), root mean square error (RMSE), and normalised cross correlation coefficient (R) are used to evaluate the noise reduction algorithm. The mean SNR, MSE, RMSE, and R are 5.7427, 0.0071, 0.0551, and 0.9050 in the China Physiological Signal Challenge 2018 dataset. Compared with others denoising methods, the experimental results not only exhibit that the SNR of the ECG signal is effectively improved, but also show that the details of the ECG signal are fully retained, laying a solid foundation for the automatic detection of ECG segments.</p>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"17 6","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12232","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12232","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocardiogram (ECG) is the most extensively applied diagnostic approach for heart diseases. However, an ECG signal is a weak bioelectrical signal and is easily disturbed by baseline wander, powerline interference, and muscle artefacts, which make detection of heart diseases more difficult. Therefore, it is very important to denoise the contaminated ECG signal in practical application. In this article, an effective ECG segments denoising method combining the ensemble empirical mode decomposition (EEMD), empirical mode decomposition (EMD), and wavelet packet (WP) is designed. The ECG signal is decomposed using the EEMD for the first time, and then the highest frequency component is decomposed by the EMD for the second time, and the high frequency components obtained from the second time are decomposed and reconstructed by the WP for the third time. Finally, the processed signal components are fused to obtain the denoised ECG signal. Furthermore, the signal-to-noise ratio (SNR), mean square error (MSE), root mean square error (RMSE), and normalised cross correlation coefficient (R) are used to evaluate the noise reduction algorithm. The mean SNR, MSE, RMSE, and R are 5.7427, 0.0071, 0.0551, and 0.9050 in the China Physiological Signal Challenge 2018 dataset. Compared with others denoising methods, the experimental results not only exhibit that the SNR of the ECG signal is effectively improved, but also show that the details of the ECG signal are fully retained, laying a solid foundation for the automatic detection of ECG segments.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf