Less Volatile Value-at-Risk Estimation Under a Semi-parametric Approach*

IF 1.8 4区 经济学 Q2 BUSINESS, FINANCE Asia-Pacific Journal of Financial Studies Pub Date : 2023-06-13 DOI:10.1111/ajfs.12433
Shih-Feng Huang, David K. Wang
{"title":"Less Volatile Value-at-Risk Estimation Under a Semi-parametric Approach*","authors":"Shih-Feng Huang,&nbsp;David K. Wang","doi":"10.1111/ajfs.12433","DOIUrl":null,"url":null,"abstract":"<p>In this study, we propose a two-step, less-volatile value-at-risk (LVaR) estimation using a generalized nearly isotonic regression (GNIR) model. In the proposed approach, a VaR sequence is first produced under the generalized autoregressive conditional heteroskedasticity (GARCH) framework. Then, the VaR sequence is adjusted by GNIR, and the generated estimate is denoted as LVaR. The results of an empirical investigation show that LVaR outperformed other VaR estimates under the classic equally weighted and exponentially weighted moving-average frameworks. Furthermore, we show not only that LVaR is less volatile, but also that it performed reasonably well in various backtests.</p>","PeriodicalId":8570,"journal":{"name":"Asia-Pacific Journal of Financial Studies","volume":"52 3","pages":"374-393"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Financial Studies","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ajfs.12433","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we propose a two-step, less-volatile value-at-risk (LVaR) estimation using a generalized nearly isotonic regression (GNIR) model. In the proposed approach, a VaR sequence is first produced under the generalized autoregressive conditional heteroskedasticity (GARCH) framework. Then, the VaR sequence is adjusted by GNIR, and the generated estimate is denoted as LVaR. The results of an empirical investigation show that LVaR outperformed other VaR estimates under the classic equally weighted and exponentially weighted moving-average frameworks. Furthermore, we show not only that LVaR is less volatile, but also that it performed reasonably well in various backtests.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半参数方法下的低波动风险值估计*
在这项研究中,我们提出了一种使用广义近似等渗回归(GNIR)模型的两步、波动较小的风险值(LVaR)估计。在所提出的方法中,首先在广义自回归条件异方差(GARCH)框架下产生VaR序列。然后,通过GNIR调整VaR序列,生成的估计值表示为LVaR。实证调查结果表明,在经典的等加权和指数加权移动平均框架下,LVaR优于其他VaR估计。此外,我们不仅表明LVaR的挥发性较小,而且它在各种回溯测试中表现得相当好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
20.00%
发文量
36
期刊最新文献
Issue Information Acknowledgement Issue Information Acknowledgement Media Attention and Labor Investment Efficiency*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1