Triple kill: Fabrication of composites coming from waste face masks, polystyrene microplastics, graphene, and their electromagnetic interference shielding behaviors
{"title":"Triple kill: Fabrication of composites coming from waste face masks, polystyrene microplastics, graphene, and their electromagnetic interference shielding behaviors","authors":"Meng Xiang, Wangxi Fan, Wei Lin, Shilong Zhou, Fengman Li, Zhou Yang, Shuang Dong","doi":"10.1002/cnl2.86","DOIUrl":null,"url":null,"abstract":"<p>Conducting polymer composites possessing excellent electromagnetic interference shielding effectiveness (EMI SE) are effective methods to prevent the harm caused by electromagnetic pollution. Since COVID-19 in 2019, people have made a lot of progress in the recycling of waste face masks (FMs). Besides, effective measures are needed to reduce the harm of microplastics (MPs) pollution in the water environment. However, so far, no publications are available in the literature that simultaneously solve the problem of electromagnetic pollution, FM pollution, and MP pollution. Herein, FMs, polystyrene MPs (PS MPs), and graphene (Gr) were used to fabricate EMI shielding composites with isolated conductive network structures via the adhesion of polydopamine (PDA). The effects of isolated conductive networks, different sizes of PS MPs, and different layers of FMs on the adsorption properties of FMs-PDA-Gr, as well as electrical performance for the obtained polypropylene-PDA-Gr composites, were studied. The composites displayed EMI SE for 29.3 dB in X-band with 2 vol.% Gr content due to the isolated conductive network structure, which may be useful to the simultaneous elimination of garbage from electromagnetic pollution, FMs pollution, and MPs pollution to a certain degree.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.86","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conducting polymer composites possessing excellent electromagnetic interference shielding effectiveness (EMI SE) are effective methods to prevent the harm caused by electromagnetic pollution. Since COVID-19 in 2019, people have made a lot of progress in the recycling of waste face masks (FMs). Besides, effective measures are needed to reduce the harm of microplastics (MPs) pollution in the water environment. However, so far, no publications are available in the literature that simultaneously solve the problem of electromagnetic pollution, FM pollution, and MP pollution. Herein, FMs, polystyrene MPs (PS MPs), and graphene (Gr) were used to fabricate EMI shielding composites with isolated conductive network structures via the adhesion of polydopamine (PDA). The effects of isolated conductive networks, different sizes of PS MPs, and different layers of FMs on the adsorption properties of FMs-PDA-Gr, as well as electrical performance for the obtained polypropylene-PDA-Gr composites, were studied. The composites displayed EMI SE for 29.3 dB in X-band with 2 vol.% Gr content due to the isolated conductive network structure, which may be useful to the simultaneous elimination of garbage from electromagnetic pollution, FMs pollution, and MPs pollution to a certain degree.
导电聚合物复合材料具有优异的电磁干扰屏蔽效果(EMI SE),是防止电磁污染危害的有效方法。自2019年新冠肺炎以来,人们在回收废弃口罩方面取得了很大进展。此外,还需要采取有效措施来减少微塑料污染对水环境的危害。然而,到目前为止,文献中还没有同时解决电磁污染、FM污染和MP污染问题的出版物。本文使用FMs、聚苯乙烯-MPs和石墨烯(Gr)通过聚多巴胺(PDA)的粘附制备了具有隔离导电网络结构的EMI屏蔽复合材料。研究了分离的导电网络、不同尺寸的PS-MPs和不同层的FMs对FMs-PDA-Gr的吸附性能以及所获得的聚丙烯-PDA-Gr复合材料的电学性能的影响。复合材料显示29.3的EMI SE X波段dB,带2 由于隔离的导电网络结构,Gr含量为vol.%,这可能在一定程度上有助于同时消除电磁污染、FMs污染和MPs污染中的垃圾。