On the selection of predictors by using greedy algorithms and information theoretic criteria

Pub Date : 2023-06-29 DOI:10.1111/anzs.12387
Fangyao Li, Christopher M. Triggs, Ciprian Doru Giurcăneanu
{"title":"On the selection of predictors by using greedy algorithms and information theoretic criteria","authors":"Fangyao Li,&nbsp;Christopher M. Triggs,&nbsp;Ciprian Doru Giurcăneanu","doi":"10.1111/anzs.12387","DOIUrl":null,"url":null,"abstract":"<p>We discuss the use of the following greedy algorithms in the prediction of multivariate time series: Matching Pursuit Algorithm (MPA), Orthogonal Matching Pursuit (OMP), Relaxed Matching Pursuit (RMP), Frank–Wolfe Algorithm (FWA) and Constrained Matching Pursuit (CMP). The last two are known to be solvers for the lasso problem. Some of the algorithms are well-known (e.g. OMP), while others are less popular (e.g. RMP). We provide a unified presentation of all the algorithms, and evaluate their computational complexity for the high-dimensional case and for the big data case. We show how 12 information theoretic (IT) criteria can be used jointly with the greedy algorithms. As part of this effort, we derive new theoretical results that allow modification of the IT criteria such that to be compatible with RMP. The prediction capabilities are tested in experiments with two data sets. The first one involves air pollution data measured in Auckland (New Zealand) and the second one concerns the House Price Index in England (the United Kingdom).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12387","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We discuss the use of the following greedy algorithms in the prediction of multivariate time series: Matching Pursuit Algorithm (MPA), Orthogonal Matching Pursuit (OMP), Relaxed Matching Pursuit (RMP), Frank–Wolfe Algorithm (FWA) and Constrained Matching Pursuit (CMP). The last two are known to be solvers for the lasso problem. Some of the algorithms are well-known (e.g. OMP), while others are less popular (e.g. RMP). We provide a unified presentation of all the algorithms, and evaluate their computational complexity for the high-dimensional case and for the big data case. We show how 12 information theoretic (IT) criteria can be used jointly with the greedy algorithms. As part of this effort, we derive new theoretical results that allow modification of the IT criteria such that to be compatible with RMP. The prediction capabilities are tested in experiments with two data sets. The first one involves air pollution data measured in Auckland (New Zealand) and the second one concerns the House Price Index in England (the United Kingdom).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
利用贪婪算法和信息论准则选择预测因子
我们讨论了以下贪婪算法在多变量时间序列预测中的应用:匹配追踪算法(MPA)、正交匹配追踪(OMP)、松弛匹配追踪(RMP)、Frank–Wolfe算法(FWA)和约束匹配追踪(CMP)。最后两个已知是套索问题的求解器。一些算法是众所周知的(例如OMP),而另一些算法则不那么流行(例如RMP)。我们提供了所有算法的统一表示,并评估了它们在高维情况和大数据情况下的计算复杂性。我们展示了如何将12个信息论(IT)准则与贪婪算法结合使用。作为这项工作的一部分,我们得出了新的理论结果,允许修改IT标准,使其与RMP兼容。在两个数据集的实验中测试了预测能力。第一个涉及奥克兰(新西兰)的空气污染数据,第二个涉及英国(英国)的房价指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1