{"title":"Formulation and mixing conditions of magnetic composite materials used for magnetic wedges in an interior permanent magnet synchronous motor","authors":"Manabu Horiuchi, Ryo Yoshida, Masami Nirei, Mitsuhide Sato, Tsutomu Mizuno","doi":"10.1002/eej.23430","DOIUrl":null,"url":null,"abstract":"<p>An interior permanent magnet synchronous motor (IPMSM) is characterized by its high efficiency. However, torque ripple and loss occur because of the spatial harmonics generated by air-gap permeance fluctuations. This study clarified that slot harmonic components can be suppressed by inserting magnetic wedges made of magnetic composite material in the slot opening of an IPMSM. First, the authors examined the torque and loss characteristics by varying relative permeability and saturation magnetic flux density of magnetic wedges using finite element analysis (FEA). Results indicated that the torque ripple and loss could be suppressed when the relative permeability of the magnetic wedge was <i>μ</i><sub>r</sub> = 10 to 22 and the saturation magnetic flux density was <i>B</i><sub>s</sub> = 0.5 to 0.75 T. Furthermore, the authors produced magnetic composite materials made of various soft magnetic material powders and examined their magnetic properties and viscosities. Results showed that a magnetic composite material with optimal magnetic properties and injectable viscosity could be manufactured using Fe-Si-Al with a low volume fraction.</p>","PeriodicalId":50550,"journal":{"name":"Electrical Engineering in Japan","volume":"216 3","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eej.23430","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
An interior permanent magnet synchronous motor (IPMSM) is characterized by its high efficiency. However, torque ripple and loss occur because of the spatial harmonics generated by air-gap permeance fluctuations. This study clarified that slot harmonic components can be suppressed by inserting magnetic wedges made of magnetic composite material in the slot opening of an IPMSM. First, the authors examined the torque and loss characteristics by varying relative permeability and saturation magnetic flux density of magnetic wedges using finite element analysis (FEA). Results indicated that the torque ripple and loss could be suppressed when the relative permeability of the magnetic wedge was μr = 10 to 22 and the saturation magnetic flux density was Bs = 0.5 to 0.75 T. Furthermore, the authors produced magnetic composite materials made of various soft magnetic material powders and examined their magnetic properties and viscosities. Results showed that a magnetic composite material with optimal magnetic properties and injectable viscosity could be manufactured using Fe-Si-Al with a low volume fraction.
期刊介绍:
Electrical Engineering in Japan (EEJ) is an official journal of the Institute of Electrical Engineers of Japan (IEEJ). This authoritative journal is a translation of the Transactions of the Institute of Electrical Engineers of Japan. It publishes 16 issues a year on original research findings in Electrical Engineering with special focus on the science, technology and applications of electric power, such as power generation, transmission and conversion, electric railways (including magnetic levitation devices), motors, switching, power economics.