Ilya S. Sosulin, Delaney H. Ryan and Aliaksandra Lisouskaya
{"title":"Radicals from tributyl phosphate decomposition: a combined electron paramagnetic resonance spectroscopic and computational chemistry investigation†","authors":"Ilya S. Sosulin, Delaney H. Ryan and Aliaksandra Lisouskaya","doi":"10.1039/D3CP03584K","DOIUrl":null,"url":null,"abstract":"<p >The radiation- and chemically-induced radicals from tributyl phosphate (TBP) have been characterized by EPR spectroscopy and theoretical calculations. The yield of X-ray-generated TBP radicals measured by a PBN spin trap is 0.22 μmol J<small><sup>−1</sup></small> (2.1 radicals/100 eV) at room temperature (298 K). The EPR spectra obtained by irradiating TBP with an electron beam at 77 K are in close agreement with literature data for samples irradiated with gamma- and X-rays [https://doi.org/10.1007/BF02165504, https://doi.org/10.1016/1359-0197(89)90319-6]. Possible conformers of alkyl-type, TBP-derived radicals were analyzed by Density Functional Theory calculations. The main contribution to the experimental spectrum at 77 K is shown to be made by a conformer of the CH<small><sub>3</sub></small>˙CHCH<small><sub>2</sub></small>-radical, which contains all carbon atoms of the butyl group in the same plane. The EPR spectra of TBP radicals induced by the OH radical in aqueous solution were measured for the first time using a continuous flow system. The formation of the alkyl-type TBP radicals CH<small><sub>3</sub></small>˙CHCH<small><sub>2</sub></small>-, ˙CH<small><sub>2</sub></small>CH<small><sub>2</sub></small>-, and -CH<small><sub>2</sub></small>˙CHO- in the ratio of 5/4/1 was detected; their spectral assignment was based on quantum chemical calculations with rotational averaging of HFC constants for the corresponding beta- and alpha-protons.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 29350-29357"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03584k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The radiation- and chemically-induced radicals from tributyl phosphate (TBP) have been characterized by EPR spectroscopy and theoretical calculations. The yield of X-ray-generated TBP radicals measured by a PBN spin trap is 0.22 μmol J−1 (2.1 radicals/100 eV) at room temperature (298 K). The EPR spectra obtained by irradiating TBP with an electron beam at 77 K are in close agreement with literature data for samples irradiated with gamma- and X-rays [https://doi.org/10.1007/BF02165504, https://doi.org/10.1016/1359-0197(89)90319-6]. Possible conformers of alkyl-type, TBP-derived radicals were analyzed by Density Functional Theory calculations. The main contribution to the experimental spectrum at 77 K is shown to be made by a conformer of the CH3˙CHCH2-radical, which contains all carbon atoms of the butyl group in the same plane. The EPR spectra of TBP radicals induced by the OH radical in aqueous solution were measured for the first time using a continuous flow system. The formation of the alkyl-type TBP radicals CH3˙CHCH2-, ˙CH2CH2-, and -CH2˙CHO- in the ratio of 5/4/1 was detected; their spectral assignment was based on quantum chemical calculations with rotational averaging of HFC constants for the corresponding beta- and alpha-protons.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.