Identification of robust yield quantitative trait loci derived from cultivated emmer for durum wheat improvement.

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Plant Genome Pub Date : 2025-03-01 Epub Date: 2023-10-24 DOI:10.1002/tpg2.20398
Amanda R Peters Haugrud, Jyoti Saini Sharma, Qijun Zhang, Andrew J Green, Steven S Xu, Justin D Faris
{"title":"Identification of robust yield quantitative trait loci derived from cultivated emmer for durum wheat improvement.","authors":"Amanda R Peters Haugrud, Jyoti Saini Sharma, Qijun Zhang, Andrew J Green, Steven S Xu, Justin D Faris","doi":"10.1002/tpg2.20398","DOIUrl":null,"url":null,"abstract":"<p><p>Durum wheat (Triticum turgidum ssp. durum L.) is an important world food crop used to make pasta products. Compared to bread wheat (Triticum aestivum L.), fewer studies have been conducted to identify genetic loci governing yield-component traits in durum wheat. A potential source of diversity for durum is its immediate progenitor, cultivated emmer (T. turgidum ssp. dicoccum). We evaluated two biparental populations of recombinant inbred lines (RILs) derived from crosses between the durum lines Ben and Rusty and the cultivated emmer wheat accessions PI 41025 and PI 193883, referred to as the Ben × PI 41025 (BP025) and Rusty × PI 193883 (RP883) RIL populations, respectively. Both populations were evaluated under field conditions in three seasons with an aim to identify quantitative trait loci (QTLs) associated with yield components and seed morphology that were expressed in multiple environments. A total of 44 and 34 multi-environment QTLs were identified in the BP025 and RP883 populations, respectively. As expected, genetic loci known to govern domestication and development were associated with some of the QTLs, but novel QTLs derived from the cultivated emmer parents and associated with yield components including spikelet number, grain weight, and grain size were identified. These QTLs offer new target loci for durum wheat improvement, and toward that goal, we identified five RILs with increased grain weight and size compared to the durum parents. These materials along with the knowledge of stable QTLs and associated markers can help to expedite the development of superior durum varieties.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20398"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20398","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Durum wheat (Triticum turgidum ssp. durum L.) is an important world food crop used to make pasta products. Compared to bread wheat (Triticum aestivum L.), fewer studies have been conducted to identify genetic loci governing yield-component traits in durum wheat. A potential source of diversity for durum is its immediate progenitor, cultivated emmer (T. turgidum ssp. dicoccum). We evaluated two biparental populations of recombinant inbred lines (RILs) derived from crosses between the durum lines Ben and Rusty and the cultivated emmer wheat accessions PI 41025 and PI 193883, referred to as the Ben × PI 41025 (BP025) and Rusty × PI 193883 (RP883) RIL populations, respectively. Both populations were evaluated under field conditions in three seasons with an aim to identify quantitative trait loci (QTLs) associated with yield components and seed morphology that were expressed in multiple environments. A total of 44 and 34 multi-environment QTLs were identified in the BP025 and RP883 populations, respectively. As expected, genetic loci known to govern domestication and development were associated with some of the QTLs, but novel QTLs derived from the cultivated emmer parents and associated with yield components including spikelet number, grain weight, and grain size were identified. These QTLs offer new target loci for durum wheat improvement, and toward that goal, we identified five RILs with increased grain weight and size compared to the durum parents. These materials along with the knowledge of stable QTLs and associated markers can help to expedite the development of superior durum varieties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
栽培二粒小麦高产数量性状位点的鉴定及改良。
硬粒小麦(Triticum turgidum ssp.Durum L.)是世界上一种重要的粮食作物,用于生产面食。与面包小麦(Triticum aestivum L.)相比,很少有研究确定硬粒小麦产量组成性状的遗传位点。硬粒菌多样性的一个潜在来源是其直系祖先,栽培的二粒菌(T.turgidumsp.dicocum)。我们评估了由硬粒小麦品系Ben和Rusty与栽培二粒小麦材料PI 41025和PI 193883之间的杂交获得的重组自交系(RIL)的两个双交群体,分别称为Ben×PI 41025(BP025)和Rusty×PI 193883(RP883)RIL群体。两个群体都在三个季节的田间条件下进行了评估,目的是鉴定与产量组成和种子形态相关的数量性状基因座(QTL),这些基因座在多种环境中表达。在BP025和RP883群体中分别鉴定出44个和34个多环境QTL。正如预期的那样,已知的控制驯化和发育的遗传基因座与一些QTL相关,但新的QTL来源于栽培的二穗母本,并与产量组成部分(包括小穗数、粒重和粒径)相关。这些QTL为硬粒小麦改良提供了新的靶位点,为了实现这一目标,我们鉴定了五个与硬粒小麦亲本相比粒重和粒径增加的RIL。这些材料以及对稳定QTL和相关标记的了解有助于加快优质硬粒品种的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Genome
Plant Genome PLANT SCIENCES-GENETICS & HEREDITY
CiteScore
6.00
自引率
4.80%
发文量
93
审稿时长
>12 weeks
期刊介绍: The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.
期刊最新文献
Exploiting historical agronomic data to develop genomic prediction strategies for early clonal selection in the Louisiana sugarcane variety development program. Identification of leaf rust resistance loci in hard winter wheat using genome-wide association mapping. Identification, characterization, and expression of Oryza sativa tryptophan decarboxylase genes associated with fluroxypyr-meptyl metabolism. Priority actions for Fusarium head blight resistance in durum wheat: Insights from the wheat initiative. Contrasting distributions and expression characteristics of transcribing repeats in Setaria viridis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1