Advancing glaucoma detection with convolutional neural networks: a paradigm shift in ophthalmology.

Shafeeq Ahmed Haja, Vidyadevi Mahadevappa
{"title":"Advancing glaucoma detection with convolutional neural networks: a paradigm shift in ophthalmology.","authors":"Shafeeq Ahmed Haja,&nbsp;Vidyadevi Mahadevappa","doi":"10.22336/rjo.2023.39","DOIUrl":null,"url":null,"abstract":"<p><p>A leading cause of irreversible vision loss, glaucoma needs early detection for effective management. Intraocular Pressure (IOP) is a significant risk factor for glaucoma. Convolutional Neural Networks (CNN) demonstrate exceptional capabilities in analyzing retinal fundus images, a non-invasive and cost-effective imaging technique widely used in glaucoma diagnosis. By learning from large datasets of annotated images, CNN can identify subtle changes in the optic nerve head and retinal structures indicative of glaucoma. This enables early and precise glaucoma diagnosis, empowering clinicians to implement timely interventions. CNNs excel in analyzing complex medical images, detecting subtle changes indicative of glaucoma with high precision. Another valuable diagnostic tool for glaucoma evaluation, Optical Coherence Tomography (OCT), provides high-resolution cross-sectional images of the retina. CNN can effectively analyze OCT scans and extract meaningful features, facilitating the identification of structural abnormalities associated with glaucoma. Visual field testing, performed using devices like the Humphrey Field Analyzer, is crucial for assessing functional vision loss in glaucoma. The integration of CNN with retinal fundus images, OCT scans, visual field testing, and IOP measurements represents a transformative approach to glaucoma detection. These advanced technologies have the potential to revolutionize ophthalmology by enabling early detection, personalized management, and improved patient outcomes. CNNs facilitate remote expert opinions and enhance treatment monitoring. Overcoming challenges such as data scarcity and interpretability can optimize CNN utilization in glaucoma diagnosis. Measuring retinal nerve fiber layer thickness as a diagnostic marker proves valuable. CNN implementation reduces healthcare costs and improves access to quality eye care. Future research should focus on optimizing architectures and incorporating novel biomarkers. CNN integration in glaucoma detection revolutionizes ophthalmology, improving patient outcomes and access to care. This review paves the way for innovative CNN-based glaucoma detection methods. <b>Abbreviations:</b> CNN = Convolutional Neural Networks, AI = Artificial Intelligence, IOP = Intraocular Pressure, OCT = Optical Coherence Tomography, CLSO = Confocal Scanning Laser Ophthalmoscopy, AUC-ROC = Area Under the Receiver Operating Characteristic Curve, RNFL = Retinal Nerve Fiber Layer, RNN = Recurrent Neural Networks, VF = Visual Field, AP = Average Precision, MD = Mean Defect, sLV = square-root of Loss Variance, NN = Neural Network, WHO = World Health Organization.</p>","PeriodicalId":94355,"journal":{"name":"Romanian journal of ophthalmology","volume":"67 3","pages":"222-237"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian journal of ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22336/rjo.2023.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A leading cause of irreversible vision loss, glaucoma needs early detection for effective management. Intraocular Pressure (IOP) is a significant risk factor for glaucoma. Convolutional Neural Networks (CNN) demonstrate exceptional capabilities in analyzing retinal fundus images, a non-invasive and cost-effective imaging technique widely used in glaucoma diagnosis. By learning from large datasets of annotated images, CNN can identify subtle changes in the optic nerve head and retinal structures indicative of glaucoma. This enables early and precise glaucoma diagnosis, empowering clinicians to implement timely interventions. CNNs excel in analyzing complex medical images, detecting subtle changes indicative of glaucoma with high precision. Another valuable diagnostic tool for glaucoma evaluation, Optical Coherence Tomography (OCT), provides high-resolution cross-sectional images of the retina. CNN can effectively analyze OCT scans and extract meaningful features, facilitating the identification of structural abnormalities associated with glaucoma. Visual field testing, performed using devices like the Humphrey Field Analyzer, is crucial for assessing functional vision loss in glaucoma. The integration of CNN with retinal fundus images, OCT scans, visual field testing, and IOP measurements represents a transformative approach to glaucoma detection. These advanced technologies have the potential to revolutionize ophthalmology by enabling early detection, personalized management, and improved patient outcomes. CNNs facilitate remote expert opinions and enhance treatment monitoring. Overcoming challenges such as data scarcity and interpretability can optimize CNN utilization in glaucoma diagnosis. Measuring retinal nerve fiber layer thickness as a diagnostic marker proves valuable. CNN implementation reduces healthcare costs and improves access to quality eye care. Future research should focus on optimizing architectures and incorporating novel biomarkers. CNN integration in glaucoma detection revolutionizes ophthalmology, improving patient outcomes and access to care. This review paves the way for innovative CNN-based glaucoma detection methods. Abbreviations: CNN = Convolutional Neural Networks, AI = Artificial Intelligence, IOP = Intraocular Pressure, OCT = Optical Coherence Tomography, CLSO = Confocal Scanning Laser Ophthalmoscopy, AUC-ROC = Area Under the Receiver Operating Characteristic Curve, RNFL = Retinal Nerve Fiber Layer, RNN = Recurrent Neural Networks, VF = Visual Field, AP = Average Precision, MD = Mean Defect, sLV = square-root of Loss Variance, NN = Neural Network, WHO = World Health Organization.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用卷积神经网络推进青光眼检测:眼科的范式转变。
青光眼是不可逆视力丧失的主要原因,需要早期发现以进行有效治疗。眼压是青光眼的重要危险因素。卷积神经网络(CNN)在分析视网膜眼底图像方面表现出非凡的能力,这是一种非侵入性且具有成本效益的成像技术,广泛用于青光眼诊断。通过从注释图像的大型数据集中学习,CNN可以识别指示青光眼的视神经头和视网膜结构的细微变化。这使得青光眼能够得到早期准确的诊断,使临床医生能够及时实施干预措施。细胞神经网络擅长分析复杂的医学图像,以高精度检测青光眼的细微变化。青光眼评估的另一个有价值的诊断工具,光学相干断层扫描(OCT),提供了视网膜的高分辨率横截面图像。CNN可以有效地分析OCT扫描并提取有意义的特征,有助于识别青光眼相关的结构异常。使用Humphrey field Analyzer等设备进行的视野测试对于评估青光眼的功能性视力损失至关重要。将CNN与视网膜眼底图像、OCT扫描、视野测试和IOP测量相结合,代表了青光眼检测的一种变革性方法。这些先进技术有可能通过实现早期检测、个性化管理和改善患者预后来彻底改变眼科学。细胞神经网络促进远程专家意见,并加强治疗监测。克服数据稀缺性和可解释性等挑战可以优化CNN在青光眼诊断中的利用率。测量视网膜神经纤维层厚度作为诊断标志物被证明是有价值的。CNN的实施降低了医疗成本,提高了获得优质眼部护理的机会。未来的研究应该集中在优化结构和结合新的生物标志物上。CNN在青光眼检测中的集成彻底改变了眼科学,改善了患者的预后和获得护理的机会。这篇综述为创新的基于CNN的青光眼检测方法铺平了道路。缩写:CNN=卷积神经网络,AI=人工智能,IOP=眼压,OCT=光学相干断层扫描,CLSO=共焦扫描激光眼科检查,AUC-ROC=受试者工作特性曲线下面积,RNFL=视网膜神经纤维层,RNN=递归神经网络,VF=视野,AP=平均精度,MD=平均缺陷,sLV=损失方差平方根,NN=神经网络,世界卫生组织=世界卫生组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical Density and Polarized Light Microscopy to confirm calcification of Intra-ocular Lens. Progression of corneal thinning and melting after collagen cross-linking for keratoconus. Protecting vision with intraoperative visual evoked potentials and tractography in transcortical brain tumor surgery. A Brief Review on Adult-Onset Coats' Disease. A neural network model for predicting the effectiveness of treatment in patients with neovascular glaucoma associated with diabetes mellitus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1