{"title":"Ranking the accelerated weathering of plastic polymers†","authors":"Maryam Hoseini, Jess Stead and Tom Bond","doi":"10.1039/D3EM00295K","DOIUrl":null,"url":null,"abstract":"<p >The timespans over which different plastics degrade in the environment are poorly understood. This study aimed to rank the degradation speed of five widespread plastic polymers–low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polylactic acid (PLA) and polyethylene terephthalate (PET)–in terms of their physicochemical properties. Five of the six samples were plastic films with identical dimensions, which allowed the influence of morphology to be excluded, with a polyethylene carrier bag (PEB) tested for comparison. An accelerated weathering chamber was used to photochemically degrade samples over 41 days, with degradation monitored <em>via</em> mass loss and changes to carbonyl index, crystallinity and contact angle. The mass loss ranking was PP ≫ LDPE > PEB > PS > PLA > PET. Estimates of the time needed for complete degradation ranged from 0.27 years for PP to 1179 years for PET. Therefore, mass loss in PP proceeded more rapidly than the other polymers, which was unexpected based on previous literature and is plausibly explained by the presence of an unlisted additive which accelerated degradation. Increases in carbonyl index proceeded more rapidly in PP and LDPE than the other polymers tested. However, changes in contact angle and crystallinity did not correspond to the mass loss ranking. Therefore, monitoring the carbonyl index during accelerated weathering trials can indicate which polymers will fragment more quickly. However, alternative approaches are needed to simulate conditions where photooxidation reactions are negligible, such as the ocean floor.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2081-2091"},"PeriodicalIF":4.3000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/em/d3em00295k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/em/d3em00295k","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The timespans over which different plastics degrade in the environment are poorly understood. This study aimed to rank the degradation speed of five widespread plastic polymers–low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polylactic acid (PLA) and polyethylene terephthalate (PET)–in terms of their physicochemical properties. Five of the six samples were plastic films with identical dimensions, which allowed the influence of morphology to be excluded, with a polyethylene carrier bag (PEB) tested for comparison. An accelerated weathering chamber was used to photochemically degrade samples over 41 days, with degradation monitored via mass loss and changes to carbonyl index, crystallinity and contact angle. The mass loss ranking was PP ≫ LDPE > PEB > PS > PLA > PET. Estimates of the time needed for complete degradation ranged from 0.27 years for PP to 1179 years for PET. Therefore, mass loss in PP proceeded more rapidly than the other polymers, which was unexpected based on previous literature and is plausibly explained by the presence of an unlisted additive which accelerated degradation. Increases in carbonyl index proceeded more rapidly in PP and LDPE than the other polymers tested. However, changes in contact angle and crystallinity did not correspond to the mass loss ranking. Therefore, monitoring the carbonyl index during accelerated weathering trials can indicate which polymers will fragment more quickly. However, alternative approaches are needed to simulate conditions where photooxidation reactions are negligible, such as the ocean floor.
期刊介绍:
Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.