{"title":"Photo-Responsive Carbon Capture over Metalloporphyrin-C<sub>60</sub> Metal-Organic Frameworks via Charge-Transfer.","authors":"Shi-Chao Qi, Zhen Sun, Zhi-Hui Yang, Yun-Jie Zhao, Jia-Xin Li, Xiao-Qin Liu, Lin-Bing Sun","doi":"10.34133/research.0261","DOIUrl":null,"url":null,"abstract":"<p><p>Great efforts have been devoted to the study of photo-responsive adsorption, but its current methodology largely depends on the well-defined photochromic units and their photo-driven molecular deformation. Here, a methodology to fabricate nondeforming photo-responsive sorbents is successfully exploited. With C<sub>60</sub>-fullerene doping in metalloporphyrin metal-organic frameworks (PCN-M, M = Fe, Co, or Ni) and intensively interacting with the metalloporphyrin sites, effective charge-transfer can be achieved over the metalloporphyrin-C<sub>60</sub> architectures once excited by the light at 350 to 780 nm. The electron density distribution and the resultant adsorption activity are thus changed by excited states, which are also stable enough to meet the timescale of microscopic adsorption equilibrium. The charge-transfer over Co(II)-porphyrin-C<sub>60</sub> is proved to be more efficient than the Fe(II)- and Ni(II)-porphyrin-C<sub>60</sub> sites, as well as than all the metalloporphyrin sites, so the CO<sub>2</sub> adsorption capacity (CAC; at 0 °C and 1 bar) over the C<sub>60</sub>-doped PCN-Co can be largely improved from 2.05 mmol g<sup>-1</sup> in the darkness to 2.69 mmol g<sup>-1</sup> with light, increased by 31%, in contrast to photo-irresponsive CAC over all C<sub>60</sub>-undoped PCN-M sorbents and only the photo-loss CAC over C<sub>60</sub>.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"6 ","pages":"0261"},"PeriodicalIF":11.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10595220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0261","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Great efforts have been devoted to the study of photo-responsive adsorption, but its current methodology largely depends on the well-defined photochromic units and their photo-driven molecular deformation. Here, a methodology to fabricate nondeforming photo-responsive sorbents is successfully exploited. With C60-fullerene doping in metalloporphyrin metal-organic frameworks (PCN-M, M = Fe, Co, or Ni) and intensively interacting with the metalloporphyrin sites, effective charge-transfer can be achieved over the metalloporphyrin-C60 architectures once excited by the light at 350 to 780 nm. The electron density distribution and the resultant adsorption activity are thus changed by excited states, which are also stable enough to meet the timescale of microscopic adsorption equilibrium. The charge-transfer over Co(II)-porphyrin-C60 is proved to be more efficient than the Fe(II)- and Ni(II)-porphyrin-C60 sites, as well as than all the metalloporphyrin sites, so the CO2 adsorption capacity (CAC; at 0 °C and 1 bar) over the C60-doped PCN-Co can be largely improved from 2.05 mmol g-1 in the darkness to 2.69 mmol g-1 with light, increased by 31%, in contrast to photo-irresponsive CAC over all C60-undoped PCN-M sorbents and only the photo-loss CAC over C60.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.