{"title":"Carbon isotopic signatures of carbonyls from roadside air observation","authors":"S.J. Guo","doi":"10.1007/s10874-021-09423-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, isotopic effects of carbonyls were evaluated during the simulation sampling of gaseous carbonyls by using a carbon isotope method developed, and then variation characteristics of carbon isotopic compositions were investigated for three dominant carbonyls including formaldehyde, acetaldehyde and acetone in the roadside air of Nanning for the first time. A small difference in δ<sup>13</sup>C values (0.04 to 0.50 ‰) were observed between the calculated and measured values of carbonyl-derivatives, indicating that the effect on carbon isotopic fractionation could hardly occurred in the simulation sampling of gaseous carbonyls. The roadside air measurements showed that <span>\\({\\delta }^{13}\\)</span>C values of formaldehyde, acetaldehyde and acetone were –36.02 ‰ to –31.18 ‰, –35.35 ‰ to –32.01 ‰ and –30.45 ‰ to –29.09 ‰, respectively. Further correlation of the measured <span>\\({\\delta }^{13}\\)</span>C values was good for formaldehyde, acetaldehyde and acetone (R<sup>2</sup> = 0.6275–0.7755), indicating that their similar sources could be the direct vehicular emission or indirect productions from precursors such as hydrocarbons. Particularly, formaldehyde, acetaldehyde and acetone in the roadside air were all enriched in the early afternoon by round 0.5–6 ‰ in <sup>13</sup>C compared to other sampling durations, which was likely due to the contributions from the positive photo-oxidation productions of hydrocarbons. Finally, it was found that all measured <span>\\({\\delta }^{13}\\)</span>C values (–36.5 ‰ to –29.0 ‰) agreed with the forecasted <span>\\({\\delta }^{13}\\)</span>C range (–43.0 ‰ to –26.0 ‰) according to the <sup>13</sup>C mass balance of carbonyls and their precursors such as hydrocarbons, indirectly confirming such positive productions in the roadside air.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 4","pages":"239 - 250"},"PeriodicalIF":3.0000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09423-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-021-09423-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, isotopic effects of carbonyls were evaluated during the simulation sampling of gaseous carbonyls by using a carbon isotope method developed, and then variation characteristics of carbon isotopic compositions were investigated for three dominant carbonyls including formaldehyde, acetaldehyde and acetone in the roadside air of Nanning for the first time. A small difference in δ13C values (0.04 to 0.50 ‰) were observed between the calculated and measured values of carbonyl-derivatives, indicating that the effect on carbon isotopic fractionation could hardly occurred in the simulation sampling of gaseous carbonyls. The roadside air measurements showed that \({\delta }^{13}\)C values of formaldehyde, acetaldehyde and acetone were –36.02 ‰ to –31.18 ‰, –35.35 ‰ to –32.01 ‰ and –30.45 ‰ to –29.09 ‰, respectively. Further correlation of the measured \({\delta }^{13}\)C values was good for formaldehyde, acetaldehyde and acetone (R2 = 0.6275–0.7755), indicating that their similar sources could be the direct vehicular emission or indirect productions from precursors such as hydrocarbons. Particularly, formaldehyde, acetaldehyde and acetone in the roadside air were all enriched in the early afternoon by round 0.5–6 ‰ in 13C compared to other sampling durations, which was likely due to the contributions from the positive photo-oxidation productions of hydrocarbons. Finally, it was found that all measured \({\delta }^{13}\)C values (–36.5 ‰ to –29.0 ‰) agreed with the forecasted \({\delta }^{13}\)C range (–43.0 ‰ to –26.0 ‰) according to the 13C mass balance of carbonyls and their precursors such as hydrocarbons, indirectly confirming such positive productions in the roadside air.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.