The SEM Reliability Paradox in a Bayesian Framework

IF 2.5 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Structural Equation Modeling: A Multidisciplinary Journal Pub Date : 2023-07-14 DOI:10.1080/10705511.2023.2220915
Timothy R. Konold, Elizabeth A. Sanders
{"title":"The SEM Reliability Paradox in a Bayesian Framework","authors":"Timothy R. Konold, Elizabeth A. Sanders","doi":"10.1080/10705511.2023.2220915","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>Within the frequentist structural equation modeling (SEM) framework, adjudicating model quality through measures of fit has been an active area of methodological research. Complicating this conversation is research revealing that a higher quality measurement portion of a SEM can result in poorer estimates of overall model fit than lower quality measurement models, given the same structural misspecifications. Through population analysis and Monte Carlo simulation, we extend the earlier research to recently developed Bayesian SEM measures of fit to evaluate whether these indices are susceptible to the same reliability paradox, in the context of using both uninformative and informative priors. Our results show that the reliability paradox occurs for RMSEA, and to some extent, gamma-hat and PPP (measures of absolute fit); but not CFI or TLI (measures of relative fit), across Bayesian (MCMC) and frequentist (maximum likelihood) SEM frameworks alike. Taken together, these findings indicate that the behavior of these newly adapted Bayesian fit indices map closely to their frequentist analogs. Implications for their utility in identifying incorrectly specified models are discussed.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"23 19","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2023.2220915","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Within the frequentist structural equation modeling (SEM) framework, adjudicating model quality through measures of fit has been an active area of methodological research. Complicating this conversation is research revealing that a higher quality measurement portion of a SEM can result in poorer estimates of overall model fit than lower quality measurement models, given the same structural misspecifications. Through population analysis and Monte Carlo simulation, we extend the earlier research to recently developed Bayesian SEM measures of fit to evaluate whether these indices are susceptible to the same reliability paradox, in the context of using both uninformative and informative priors. Our results show that the reliability paradox occurs for RMSEA, and to some extent, gamma-hat and PPP (measures of absolute fit); but not CFI or TLI (measures of relative fit), across Bayesian (MCMC) and frequentist (maximum likelihood) SEM frameworks alike. Taken together, these findings indicate that the behavior of these newly adapted Bayesian fit indices map closely to their frequentist analogs. Implications for their utility in identifying incorrectly specified models are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯框架下的SEM可靠性悖论
摘要在频率结构方程建模(SEM)框架中,通过拟合度量来判定模型质量一直是方法学研究的一个活跃领域。研究表明,在相同的结构规格错误的情况下,SEM的高质量测量部分可能导致比低质量测量模型更差的整体模型拟合估计。通过总体分析和蒙特卡罗模拟,我们将早期的研究扩展到最近开发的贝叶斯SEM拟合度量,以评估这些指标在使用非信息和信息先验的背景下是否容易受到相同的可靠性悖论的影响。我们的研究结果表明,RMSEA存在可靠性悖论,在一定程度上,gamma-hat和PPP(绝对拟合度量)也存在可靠性悖论;但不是CFI或TLI(相对拟合度量),跨贝叶斯(MCMC)和频率(最大似然)SEM框架。综上所述,这些发现表明,这些新适应的贝叶斯拟合指数的行为与它们的频率相似。讨论了它们在识别不正确指定的模型方面的实用意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
11.70%
发文量
71
审稿时长
>12 weeks
期刊介绍: Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.
期刊最新文献
Evaluation of Structural Equation Model Forests Performance to Identify Omitted Influential Covariates Evaluating Local Model Misspecification with Modification Indices in Bayesian Structural Equation Modeling Addressing Missing Data in Latent Class Analysis When Using a Three-Step Estimation Approach The Effect of Measurement Error on Hypothesis Testing in Small Sample Structural Equation Modeling: A Comparison of Various Estimation Approaches Dynamic Structural Equation Modeling with Cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1