Enhanced catalytic activity and thermal stability by highly dispersed Pd-based nanocatalysts embedded in ZrO2 hollow spheres

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers of Materials Science Pub Date : 2023-05-26 DOI:10.1007/s11706-023-0649-5
Tianli Liu, Jian Zhang, Mingjie Xu, Chuanjin Tian, Chang-An Wang
{"title":"Enhanced catalytic activity and thermal stability by highly dispersed Pd-based nanocatalysts embedded in ZrO2 hollow spheres","authors":"Tianli Liu,&nbsp;Jian Zhang,&nbsp;Mingjie Xu,&nbsp;Chuanjin Tian,&nbsp;Chang-An Wang","doi":"10.1007/s11706-023-0649-5","DOIUrl":null,"url":null,"abstract":"<div><p>Sintering resistant noble metal nanoparticles are critical to the development of advanced catalysts with high activity and stability. Herein, we reported the construction of highly dispersed Pd nanoparticles loaded at the inner wall of ZrO<sub>2</sub> hollow spheres (Pd@HS-ZrO<sub>2</sub>), which shows improved activity and thermal stability over references in the Pd-ZrO<sub>2</sub> (catalyst-support) system. Even after 800 °C high temperature calcination, the Pd nanoparticles and ZrO<sub>2</sub> hollow spheres did not undergo morphological changes. The Pd@HS-ZrO<sub>2</sub> manifests batter catalytic activity and thermal stability than the counterpart Pd/ZrO<sub>2</sub> catalysts. In comparison to Pd/ZrO<sub>2</sub>-800, Pd@ZrO<sub>2</sub>-800 exhibits a 25°C reduction in the temperature required for complete conversion of CO. The enhanced catalytic activity and thermal stability of Pd@HS-ZrO<sub>2</sub> can be attributed to the nanoconfinement effect offered by the 10 nm wall thickness of the ZrO<sub>2</sub> hollow spheres, which suppresses the coarsening of the Pd nanoparticles (active center for catalysis).</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0649-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sintering resistant noble metal nanoparticles are critical to the development of advanced catalysts with high activity and stability. Herein, we reported the construction of highly dispersed Pd nanoparticles loaded at the inner wall of ZrO2 hollow spheres (Pd@HS-ZrO2), which shows improved activity and thermal stability over references in the Pd-ZrO2 (catalyst-support) system. Even after 800 °C high temperature calcination, the Pd nanoparticles and ZrO2 hollow spheres did not undergo morphological changes. The Pd@HS-ZrO2 manifests batter catalytic activity and thermal stability than the counterpart Pd/ZrO2 catalysts. In comparison to Pd/ZrO2-800, Pd@ZrO2-800 exhibits a 25°C reduction in the temperature required for complete conversion of CO. The enhanced catalytic activity and thermal stability of Pd@HS-ZrO2 can be attributed to the nanoconfinement effect offered by the 10 nm wall thickness of the ZrO2 hollow spheres, which suppresses the coarsening of the Pd nanoparticles (active center for catalysis).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高度分散的钯基纳米催化剂包埋在ZrO2空心球中,提高了催化活性和热稳定性
抗烧结贵金属纳米颗粒是开发高活性、高稳定性高级催化剂的关键。在此,我们报道了在ZrO2中空球体内壁上负载的高度分散的Pd纳米颗粒的构建(Pd@HS-ZrO2),其在Pd-ZrO2(催化剂-载体)体系中表现出比参考文献更高的活性和热稳定性。即使经过800℃高温煅烧,Pd纳米粒子和ZrO2空心球也没有发生形态变化。Pd@HS-ZrO2的催化活性和热稳定性均优于Pd/ZrO2催化剂。与Pd/ZrO2-800相比,Pd@ZrO2-800的CO完全转化温度降低了25℃。Pd@HS-ZrO2的催化活性和热稳定性的增强可归因于10 nm壁厚的ZrO2空心球提供的纳米限制效应,这抑制了Pd纳米颗粒(催化活性中心)的粗化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
期刊最新文献
Revealing effects of powder reuse for LPBF-fabricated NiTi shape memory alloys Construction of a novel fluorescent nanoenzyme based on lanthanides for tumor theranostics In vitro evaluation of Zn–10Mg–xHA composites with the core–shell structure Femtosecond laser-induced graphene for temperature and ultrasensitive flexible strain sensing Adsorption and photocatalytic degradation performances of methyl orange-imprinted polysiloxane particles using TiO2 as matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1