Yang Yang , Guanqi Fu , X. San Liang , Robert H. Weisberg , Yonggang Liu
{"title":"Causal relations between the loop current penetration and the inflow/outflow conditions inferred with a rigorous quantitative causality analysis","authors":"Yang Yang , Guanqi Fu , X. San Liang , Robert H. Weisberg , Yonggang Liu","doi":"10.1016/j.dsr2.2023.105298","DOIUrl":null,"url":null,"abstract":"<div><p>The causal relationship between the Loop Current (LC) penetration into the Gulf of Mexico and the inflow/outflow conditions in the Yucatan Channel and the Straits of Florida is analyzed using a recently developed causality analysis, which is quantitative in nature, and rigorously derived from first principles. Long-term time series from a 23-year high-resolution reanalysis product reveals that the LC penetration is associated with a dipole (tripole) mode of transport (vorticity flux) in both channels. These relationships, though significant from a perspective of correlation, do not necessarily imply causality. By applying the causality analysis, we identify a clear asymmetry of causality, that is, the flow conditions in the Yucatan Channel and the Straits of Florida can both cause the LC penetration. Conversely, the LC path state is less causal to the current variability in the two channels. The spatial causal structures further reveal that the upstream influence from the Yucatan Channel is strong in the main body of the LC as well as its extension area, while the downstream influence from the Straits of Florida is confined within the eastern branch of the LC. The asymmetric causal relations obtained from the data-assimilative reanalysis product are further confirmed in a free-running model simulation forced by three repeated cycles of atmospheric forcing, although the strength of the causality could vary from one simulation cycle to another, due to the intrinsic variability of the LC system.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"209 ","pages":"Article 105298"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064523000486","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The causal relationship between the Loop Current (LC) penetration into the Gulf of Mexico and the inflow/outflow conditions in the Yucatan Channel and the Straits of Florida is analyzed using a recently developed causality analysis, which is quantitative in nature, and rigorously derived from first principles. Long-term time series from a 23-year high-resolution reanalysis product reveals that the LC penetration is associated with a dipole (tripole) mode of transport (vorticity flux) in both channels. These relationships, though significant from a perspective of correlation, do not necessarily imply causality. By applying the causality analysis, we identify a clear asymmetry of causality, that is, the flow conditions in the Yucatan Channel and the Straits of Florida can both cause the LC penetration. Conversely, the LC path state is less causal to the current variability in the two channels. The spatial causal structures further reveal that the upstream influence from the Yucatan Channel is strong in the main body of the LC as well as its extension area, while the downstream influence from the Straits of Florida is confined within the eastern branch of the LC. The asymmetric causal relations obtained from the data-assimilative reanalysis product are further confirmed in a free-running model simulation forced by three repeated cycles of atmospheric forcing, although the strength of the causality could vary from one simulation cycle to another, due to the intrinsic variability of the LC system.
期刊介绍:
Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.