Interannual variability of red sea overflow water pathways in the Western Arabian Sea in an eddy rich reanalysis

IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Deep-sea Research Part Ii-topical Studies in Oceanography Pub Date : 2023-06-01 DOI:10.1016/j.dsr2.2023.105289
Viviane V. Menezes
{"title":"Interannual variability of red sea overflow water pathways in the Western Arabian Sea in an eddy rich reanalysis","authors":"Viviane V. Menezes","doi":"10.1016/j.dsr2.2023.105289","DOIUrl":null,"url":null,"abstract":"<div><p>The present study investigates the interannual variability of the advective pathways and transit times of the Red Sea Overflow Water (RSOW) in the western Arabian Sea using virtual particles as a proxy indicator for the poorly understood RSOW spreading. The Lagrangian simulations are based on the GLORYS12 eddy-rich reanalysis (1/12°), which assimilates most satellite and in situ observations from 1993 to 2018. Statistical analysis of particle positions reveals the Gulf's mouth is always the main RSOW export route out of the Gulf of Aden. Moreover, there is substantial interannual variability in the three RSOW pathways in the western Arabian Sea, which are consistent with in-situ salinity variability at the RSOW layer. The faster Socotra pathway is strongest for particles released in 1998–1999 and 2012 and almost non-existent for the ones released in 2006–2007. The strongest state of the Socotra pathway co-occurs with some of the most powerful El-Nino/Southern Oscillation and Indian Ocean Dipole events in history. A decadal seesaw stands out between the Northwest pathway, which advects RSOW northward offshore the Arabian Peninsula, and the Southwest pathway, which advects RSOW southward to the Somali Basin along the eastern side of Socotra. While the Northwest pathway strengthened from 1996 to 2011, the Southwest weakened. These changes are associated with interannual variability in the western boundary undercurrents and subsurface eddy kinetic energy. Interestingly, the Northwest pathway trajectories are eddy-dominated, in striking contrast with the Socotra and Southwest pathways, in which western boundary undercurrents are major players. This fact suggests that eddy-induced transport is likely to have a significant role in spreading the RSOW northward. No considerable interannual variability in transit times is detected for any pathway.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"209 ","pages":"Article 105289"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064523000395","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study investigates the interannual variability of the advective pathways and transit times of the Red Sea Overflow Water (RSOW) in the western Arabian Sea using virtual particles as a proxy indicator for the poorly understood RSOW spreading. The Lagrangian simulations are based on the GLORYS12 eddy-rich reanalysis (1/12°), which assimilates most satellite and in situ observations from 1993 to 2018. Statistical analysis of particle positions reveals the Gulf's mouth is always the main RSOW export route out of the Gulf of Aden. Moreover, there is substantial interannual variability in the three RSOW pathways in the western Arabian Sea, which are consistent with in-situ salinity variability at the RSOW layer. The faster Socotra pathway is strongest for particles released in 1998–1999 and 2012 and almost non-existent for the ones released in 2006–2007. The strongest state of the Socotra pathway co-occurs with some of the most powerful El-Nino/Southern Oscillation and Indian Ocean Dipole events in history. A decadal seesaw stands out between the Northwest pathway, which advects RSOW northward offshore the Arabian Peninsula, and the Southwest pathway, which advects RSOW southward to the Somali Basin along the eastern side of Socotra. While the Northwest pathway strengthened from 1996 to 2011, the Southwest weakened. These changes are associated with interannual variability in the western boundary undercurrents and subsurface eddy kinetic energy. Interestingly, the Northwest pathway trajectories are eddy-dominated, in striking contrast with the Socotra and Southwest pathways, in which western boundary undercurrents are major players. This fact suggests that eddy-induced transport is likely to have a significant role in spreading the RSOW northward. No considerable interannual variability in transit times is detected for any pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富涡再分析中西阿拉伯海红海溢水道的年际变化
本研究使用虚拟粒子作为鲜为人知的红海溢流水扩散的替代指标,调查了阿拉伯海西部红海溢流水平流路径和过境时间的年际变化。拉格朗日模拟基于GLORYS12富涡再分析(1/12°),该分析同化了1993年至2018年的大多数卫星和现场观测结果。粒子位置的统计分析表明,海湾河口始终是RSOW离开亚丁湾的主要出口路线。此外,阿拉伯海西部的三条RSOW路径存在显著的年际变化,这与RSOW层的原位盐度变化一致。1998年至1999年和2012年释放的粒子的更快的索科特拉路径最强,2006年至2007年释放的几乎不存在。索科特拉路径的最强状态与历史上一些最强大的厄尔尼诺/南方涛动和印度洋偶极子事件同时发生。在西北路径和西南路径之间出现了十年的拉锯,西北路径向北向阿拉伯半岛近海倾斜,西南路径向南向索科特拉东侧的索马里盆地倾斜。从1996年到2011年,西北路径增强,而西南路径减弱。这些变化与西部边界暗流和地下涡动能的年际变化有关。有趣的是,西北路径轨迹以涡流为主,与索科特拉和西南路径形成鲜明对比,在索科特拉路径和西南路径中,西部边界暗流是主要参与者。这一事实表明,涡致输运可能在RSOW向北扩散中发挥重要作用。对于任何路径,都没有检测到过境时间的显著年际变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
16.70%
发文量
115
审稿时长
3 months
期刊介绍: Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.
期刊最新文献
Editorial Board Unveiling marine heatwave dynamics in the Persian /Arabian Gulf and the Gulf of Oman: A spatio-temporal analysis and future projections Ecophenotypic variation in a cosmopolitan reef-building coral suggests reduced deep-sea reef growth under ocean change Siliceous microfossil assemblages in the southern Emperor Seamount Chain sediments and their biogeographical and paleoceanographical implications The first Mud Dragons (Kinorhyncha) from the Emperor Seamount Chain (Northwestern Pacific) with notes on their biogeography and distribution patterns in the Pacific Deep-Sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1