Deep-learning model for sea surface temperature prediction near the Korean Peninsula

IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Deep-sea Research Part Ii-topical Studies in Oceanography Pub Date : 2023-04-01 DOI:10.1016/j.dsr2.2023.105263
Hey-Min Choi , Min-Kyu Kim , Hyun Yang
{"title":"Deep-learning model for sea surface temperature prediction near the Korean Peninsula","authors":"Hey-Min Choi ,&nbsp;Min-Kyu Kim ,&nbsp;Hyun Yang","doi":"10.1016/j.dsr2.2023.105263","DOIUrl":null,"url":null,"abstract":"<div><p><span>Recently, sea surface temperatures<span><span> (SSTs) near the Korean Peninsula have increased rapidly due to </span>global warming<span>; this phenomenon can lead to high water temperatures and extensive damage to Korean fish farms. To reduce such damage, it is necessary to predict high water temperature events in advance. In this study, we developed a method for predicting high water temperature events using time series SST data for the Korean Peninsula obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 product and a long short-term memory (LSTM) network designed for time series data prediction. First, the SST prediction model was used to predict SSTs. Predicted SSTs exceeding 28 °C, which is the Korean government standard for issuing high water temperature warnings, were designated as high water temperatures. To evaluate the prediction accuracy of the SST prediction model, 1-to 7-day predictions were evaluated in terms of the coefficient of determination (R</span></span></span><sup>2</sup><span>), root mean square error (RMSE), and mean absolute percentage error (MAPE). The R</span><sup>2</sup>, RMSE, and MAPE values of the 1-day prediction SST model were 0.985, 0.14 °C, and 0.38%, respectively, whereas those of the 7-day prediction SST model were 0.574, 0.74 °C, and 2.26%, respectively. We also calculated F1 scores to evaluate high water temperature classification accuracy. The F1 scores of the 1- and 7-day SST prediction models were 0.963 and 0.739, respectively.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064523000139","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, sea surface temperatures (SSTs) near the Korean Peninsula have increased rapidly due to global warming; this phenomenon can lead to high water temperatures and extensive damage to Korean fish farms. To reduce such damage, it is necessary to predict high water temperature events in advance. In this study, we developed a method for predicting high water temperature events using time series SST data for the Korean Peninsula obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 product and a long short-term memory (LSTM) network designed for time series data prediction. First, the SST prediction model was used to predict SSTs. Predicted SSTs exceeding 28 °C, which is the Korean government standard for issuing high water temperature warnings, were designated as high water temperatures. To evaluate the prediction accuracy of the SST prediction model, 1-to 7-day predictions were evaluated in terms of the coefficient of determination (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE). The R2, RMSE, and MAPE values of the 1-day prediction SST model were 0.985, 0.14 °C, and 0.38%, respectively, whereas those of the 7-day prediction SST model were 0.574, 0.74 °C, and 2.26%, respectively. We also calculated F1 scores to evaluate high water temperature classification accuracy. The F1 scores of the 1- and 7-day SST prediction models were 0.963 and 0.739, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
朝鲜半岛附近海面温度预测的深度学习模型
最近,由于全球变暖,朝鲜半岛附近的海面温度迅速上升;这种现象可能导致水温升高,并对韩国渔场造成大面积破坏。为了减少这种破坏,有必要提前预测高水温事件。在这项研究中,我们使用从欧洲中期天气预报中心(ECMWF)ERA5产品获得的朝鲜半岛时间序列SST数据和为时间序列数据预测设计的长短期记忆(LSTM)网络,开发了一种预测高水温事件的方法。首先,利用SST预测模型对SST进行预测。预测的SST超过28°C,这是韩国政府发布高温警报的标准,被指定为高温。为了评估SST预测模型的预测准确性,根据决定系数(R2)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)对1至7天的预测进行了评估。1天预测SST模型的R2、RMSE和MAPE值分别为0.985、0.14°C和0.38%,而7天预测SST模式的R2、RMS和MAPE分别为0.574、0.74°C和2.26%。我们还计算了F1分数,以评估高水温分类的准确性。1天和7天SST预测模型的F1得分分别为0.963和0.739。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
16.70%
发文量
115
审稿时长
3 months
期刊介绍: Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.
期刊最新文献
Geomorphology and oceanography of central-eastern Indian Ocean seamounts Distribution characteristics of microplastics in the surface mixed layer of the western Indian Ocean Editorial Board Local size structure and distribution of demersal fish in relation to sea pens and other benthic habitats in a deep-sea soft-bottom environment A decrease in pH, increase in temperature, and pollution exposure elicit distinct stress responses in a scleractinian coral (Desmophyllum pertusum)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1