How do topography and thermal front influence the water transport from the northern Laotieshan Channel to the Bohai Sea interior in summer?

IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Deep-sea Research Part Ii-topical Studies in Oceanography Pub Date : 2023-04-01 DOI:10.1016/j.dsr2.2023.105261
Yinfeng Xu , Feng Zhou , Qicheng Meng , Dingyong Zeng , Tao Yan , Wenyan Zhang
{"title":"How do topography and thermal front influence the water transport from the northern Laotieshan Channel to the Bohai Sea interior in summer?","authors":"Yinfeng Xu ,&nbsp;Feng Zhou ,&nbsp;Qicheng Meng ,&nbsp;Dingyong Zeng ,&nbsp;Tao Yan ,&nbsp;Wenyan Zhang","doi":"10.1016/j.dsr2.2023.105261","DOIUrl":null,"url":null,"abstract":"<div><p>Water renewal through the Bohai Strait largely dominates the water quality of the semi-enclosed Bohai Sea (BS), which connects only to the northern Yellow Sea (NYS) through the strait. Although the peak water transport through the Bohai Strait occurs in summer, the spatially averaged water residence time of the BS shows no significant decrease compared to other periods. A three-dimensional model is applied to unravel the detailed structure and dynamic processes of the summertime NYS water transport from the northern Laotieshan Channel to the BS interior. Model results from both climatological and hindcasting cases show that despite a large amount of the NYS water enters the strait, they are confined to the Laotieshan Channel between the Central Bank and Dalian surrounded by a strong Ω-shaped tidal front and could not move further north into the Liaodong Bay. The strong along-front flow steered by the topography forms a counter-clockwise circulation pattern in the strait zone, resulting in most of water southward movement east of the Central Bank, then join the outflow south of the strait and leave for the NYS. The Central Bank and the topographic sill north of the Laotieshan Channel act as a barrier that significantly reduces the water exchange between the strait zone and the BS interior, in particular the Liaodong Bay. Particle-tracking experiments suggest that less than 10% of particles released in the NYS could finally reach the BS interior, and among of them only a small portion of them could move further north into the Liaodong Bay. Momentum diagnostics suggest that the water transport northwest of the strait is dominated by geostrophic balance in the Ω-shaped frontal region. Sensitivity experiments indicate that tides promote the surface water transport from the NYS to the BS interior. The realistic wind forcing including synoptic events may facilitate the water transport from the strait to the BS interior by modulating the barotropic and baroclinic pressure gradient than that with the climatological wind case.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064523000115","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 3

Abstract

Water renewal through the Bohai Strait largely dominates the water quality of the semi-enclosed Bohai Sea (BS), which connects only to the northern Yellow Sea (NYS) through the strait. Although the peak water transport through the Bohai Strait occurs in summer, the spatially averaged water residence time of the BS shows no significant decrease compared to other periods. A three-dimensional model is applied to unravel the detailed structure and dynamic processes of the summertime NYS water transport from the northern Laotieshan Channel to the BS interior. Model results from both climatological and hindcasting cases show that despite a large amount of the NYS water enters the strait, they are confined to the Laotieshan Channel between the Central Bank and Dalian surrounded by a strong Ω-shaped tidal front and could not move further north into the Liaodong Bay. The strong along-front flow steered by the topography forms a counter-clockwise circulation pattern in the strait zone, resulting in most of water southward movement east of the Central Bank, then join the outflow south of the strait and leave for the NYS. The Central Bank and the topographic sill north of the Laotieshan Channel act as a barrier that significantly reduces the water exchange between the strait zone and the BS interior, in particular the Liaodong Bay. Particle-tracking experiments suggest that less than 10% of particles released in the NYS could finally reach the BS interior, and among of them only a small portion of them could move further north into the Liaodong Bay. Momentum diagnostics suggest that the water transport northwest of the strait is dominated by geostrophic balance in the Ω-shaped frontal region. Sensitivity experiments indicate that tides promote the surface water transport from the NYS to the BS interior. The realistic wind forcing including synoptic events may facilitate the water transport from the strait to the BS interior by modulating the barotropic and baroclinic pressure gradient than that with the climatological wind case.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地形和热锋如何影响老铁山海峡北部夏季向渤海内陆的水运?
通过渤海海峡的水更新在很大程度上控制了半封闭渤海(BS)的水质,该海域仅通过该海峡与黄海北部(NYS)相连。尽管渤海海峡的输水高峰出现在夏季,但与其他时段相比,BS的空间平均水停留时间没有显著下降。应用三维模型,揭示了老铁山海峡北部至BS内部夏季NYS输水的详细结构和动力学过程。从气候学和后预报两个实例的模型结果表明,尽管有大量的NYS水进入该海峡,但它们被强Ω形潮汐锋包围在中央银行和大连之间的老铁山海峡内,无法进一步向北进入辽东湾。受地形控制的强沿锋流在海峡区形成逆时针环流模式,导致大部分水在中央银行以东向南移动,然后在海峡以南与外流汇合,流向纽约S。老铁山海峡以北的中央银行和地形岩床起到了屏障的作用,显著减少了海峡区与BS内部,特别是辽东湾之间的水交换。粒子跟踪实验表明,在NYS中释放的粒子中,只有不到10%能够最终到达BS内部,其中只有一小部分能够进一步向北进入辽东湾。动量诊断表明,海峡西北部的水输送主要受Ω形锋区的地转平衡控制。敏感性实验表明,潮汐促进了地表水从NYS向BS内部的输送。与气候风情况相比,包括天气事件在内的现实风力可以通过调节正压和斜压压力梯度来促进从海峡到BS内部的水输送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
16.70%
发文量
115
审稿时长
3 months
期刊介绍: Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.
期刊最新文献
Geomorphology and oceanography of central-eastern Indian Ocean seamounts Distribution characteristics of microplastics in the surface mixed layer of the western Indian Ocean Editorial Board Local size structure and distribution of demersal fish in relation to sea pens and other benthic habitats in a deep-sea soft-bottom environment A decrease in pH, increase in temperature, and pollution exposure elicit distinct stress responses in a scleractinian coral (Desmophyllum pertusum)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1