Oxidation of benzene to phenol with N2O over a hierarchical Fe/ZSM-5 catalyst

IF 14.6 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Green Energy & Environment Pub Date : 2023-08-01 DOI:10.1016/j.gee.2022.01.007
Cui Ouyang , Jianwei Li , Yaqi Qu , Song Hong , Songbo He
{"title":"Oxidation of benzene to phenol with N2O over a hierarchical Fe/ZSM-5 catalyst","authors":"Cui Ouyang ,&nbsp;Jianwei Li ,&nbsp;Yaqi Qu ,&nbsp;Song Hong ,&nbsp;Songbo He","doi":"10.1016/j.gee.2022.01.007","DOIUrl":null,"url":null,"abstract":"<div><p>Catalytic oxidation of benzene with N<sub>2</sub>O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixed-bed reactor was investigated. The spent catalyst was <em>in-situ</em> regenerated by an oxidative treatment using N<sub>2</sub>O and in total 10 reaction-regeneration cycles were performed. A 100% N<sub>2</sub>O conversion, 93.3% phenol selectivity, and high initial phenol formation rate of 16.49 ± 0.06 mmol<sub>phenol</sub> g<sub>catalyst</sub><sup>−1</sup> h<sup>−1</sup> at time on stream (TOS) of 5 min, and a good phenol productivity of 147.06 mmol<sub>phenol</sub> g<sub>catalyst</sub><sup>−1</sup> during catalyst life-time of 1800 min were obtained on a fresh hierarchical Fe/ZSM-5-Hi2.8 catalyst. With the reaction-regeneration cycle, N<sub>2</sub>O conversion is fully recovered within TOS of 3 h, moreover, the phenol productivity was decreased <em>ca.</em> 2.2 ± 0.8% after each cycle, leading to a total phenol productivity of <em>ca</em>. 0.44 ton<sub>phenol</sub> kg<sub>catalyst</sub><sup>−1</sup> estimated for 300 cycles. Catalyst characterizations imply that the coke is rapidly deposited on catalyst surface in the initial TOS of 3 h (0.28 mg<sub>c</sub> g<sub>catalyst</sub><sup>−1</sup> min<sup>−1</sup>) and gradually becomes graphitic during the TOS of 30 h with a slow formation rate of 0.06 mg<sub>c</sub> g<sub>catalyst</sub><sup>−1</sup> min<sup>−1</sup>. Among others (e.g., the decrease of textural property and acidity), the nearly complete coverage of the active Fe-O-Al sites by coke accounts for the main catalyst deactivation. Besides these reversible deactivation characteristics related to coking, the irreversible catalyst deactivation is also observed with the reaction-regeneration cycle. The latter is reflected by a further decreased amount of the active Fe-O-Al sites, which agglomerate on catalyst surface with the cycle, likely associated with the hard coke residue that is not completely removed by the regeneration.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 4","pages":"Pages 1161-1173"},"PeriodicalIF":14.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468025722000073","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Catalytic oxidation of benzene with N2O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixed-bed reactor was investigated. The spent catalyst was in-situ regenerated by an oxidative treatment using N2O and in total 10 reaction-regeneration cycles were performed. A 100% N2O conversion, 93.3% phenol selectivity, and high initial phenol formation rate of 16.49 ± 0.06 mmolphenol gcatalyst−1 h−1 at time on stream (TOS) of 5 min, and a good phenol productivity of 147.06 mmolphenol gcatalyst−1 during catalyst life-time of 1800 min were obtained on a fresh hierarchical Fe/ZSM-5-Hi2.8 catalyst. With the reaction-regeneration cycle, N2O conversion is fully recovered within TOS of 3 h, moreover, the phenol productivity was decreased ca. 2.2 ± 0.8% after each cycle, leading to a total phenol productivity of ca. 0.44 tonphenol kgcatalyst−1 estimated for 300 cycles. Catalyst characterizations imply that the coke is rapidly deposited on catalyst surface in the initial TOS of 3 h (0.28 mgc gcatalyst−1 min−1) and gradually becomes graphitic during the TOS of 30 h with a slow formation rate of 0.06 mgc gcatalyst−1 min−1. Among others (e.g., the decrease of textural property and acidity), the nearly complete coverage of the active Fe-O-Al sites by coke accounts for the main catalyst deactivation. Besides these reversible deactivation characteristics related to coking, the irreversible catalyst deactivation is also observed with the reaction-regeneration cycle. The latter is reflected by a further decreased amount of the active Fe-O-Al sites, which agglomerate on catalyst surface with the cycle, likely associated with the hard coke residue that is not completely removed by the regeneration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分级Fe/ZSM-5催化剂上N2O氧化苯制苯酚
在连续固定床反应器中,研究了分级微孔Fe/ZSM-5基催化剂上N2O催化苯氧化制苯酚的反应。废催化剂通过使用N2O的氧化处理原位再生,总共进行了10次反应再生循环。在新的分级Fe/ZSM-5-H2.8催化剂上,获得了100%的N2O转化率、93.3%的苯酚选择性、16.49±0.06 mmol g催化剂−1 h−1的高初始苯酚形成率和147.06 mmol c催化剂−1的良好苯酚产率。在反应再生循环中,N2O转化率在3小时的TOS内完全恢复,此外,苯酚生产率下降约2.2±0.8%,导致总苯酚生产率约为0.44吨苯酚kgcatalyst−1,估计300次循环。催化剂表征表明,焦炭在3小时的初始TOS(0.28 mgc g催化剂−1分钟−1)中快速沉积在催化剂表面,并在30小时的TOS中逐渐变为石墨化,形成速率为0.06 mgc c g催化剂–1分钟−2。除其他外(例如,结构性质和酸度的降低),焦炭几乎完全覆盖活性Fe-O-Al位点是主要催化剂失活的原因。除了这些与焦化有关的可逆失活特性外,反应再生循环也观察到催化剂的不可逆失活。后者反映为活性Fe-O-Al位点的进一步减少,其随着循环而聚集在催化剂表面,可能与再生未完全去除的硬焦残留物有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Energy & Environment
Green Energy & Environment Energy-Renewable Energy, Sustainability and the Environment
CiteScore
16.80
自引率
3.80%
发文量
332
审稿时长
12 days
期刊介绍: Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.
期刊最新文献
Construction of two-dimensional heterojunctions based on metal-free semiconductor materials and Covalent Organic Frameworks for exceptional solar energy catalysis Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis Research on the application of defect engineering in the field of environmental catalysis Recyclable bio-based epoxy resin thermoset polymer from wood for circular economy Ti3C2 MXene nanosheets integrated cobalt-doped nickel hydroxide heterostructured composite: An efficient electrocatalyst for overall water-splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1