KVPO4F/carbon nanocomposite with highly accessible active sites and robust chemical bonds for advanced potassium-ion batteries

IF 10.7 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Green Energy & Environment Pub Date : 2023-10-01 DOI:10.1016/j.gee.2022.12.007
Jianzhi Xu , Liping Duan , Jiaying Liao, Haowei Tang, Jun Lin, Xiaosi Zhou
{"title":"KVPO4F/carbon nanocomposite with highly accessible active sites and robust chemical bonds for advanced potassium-ion batteries","authors":"Jianzhi Xu ,&nbsp;Liping Duan ,&nbsp;Jiaying Liao,&nbsp;Haowei Tang,&nbsp;Jun Lin,&nbsp;Xiaosi Zhou","doi":"10.1016/j.gee.2022.12.007","DOIUrl":null,"url":null,"abstract":"<div><p>KVPO<sub>4</sub>F (KVPF) has been extensively investigated as the potential cathode material for potassium-ion batteries (PIBs) owing to its high theoretical capacity, superior operating voltage, and three-dimensional K<sup>+</sup> conduction pathway. Nevertheless, the electrochemical behavior of KVPF is limited by the inherent poor electronic conductivity of the phosphate framework and unstable electrode/electrolyte interface. To address the above issues, this work proposes an infiltration-calcination method to confine the in-situ grown KVPF into the mesoporous carbon CMK-3 (denoted KVPF@CMK-3). The assembled KVPF@CMK-3 nanocomposite features three-dimensional interconnected carbon channels, which not only offer abundant active sites and significantly accelerate K<sup>+</sup>/electron transport, but also prevent the growth of KVPF nanoparticle agglomerates, hence stabilizing the structure of the material. Additionally, V–F–C bonds are created at the interface of KVPF and CMK-3, which reduce the loss of F and stabilize the electrode interface. Thus, when tested as a cathode material for PIBs, the KVPF@CMK-3 nanocomposite delivers superior reversible capacitiy (103.2 mAh g<sup>−1</sup> at 0.2 C), outstanding rate performance (90.1 mAh g<sup>−1</sup> at 20 C), and steady cycling performance (92.2 mAh g<sup>−1</sup> at 10 C and with the retention of 88.2% after 500 cycles). Moreover, its potassium storage mechanism is further examined by ex-situ XRD and ex-situ XPS techniques. The above synthetic strategy demonstrates the potential of KVPF@CMK-3 to be applied as the cathode for PIBs.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468025722001856","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 11

Abstract

KVPO4F (KVPF) has been extensively investigated as the potential cathode material for potassium-ion batteries (PIBs) owing to its high theoretical capacity, superior operating voltage, and three-dimensional K+ conduction pathway. Nevertheless, the electrochemical behavior of KVPF is limited by the inherent poor electronic conductivity of the phosphate framework and unstable electrode/electrolyte interface. To address the above issues, this work proposes an infiltration-calcination method to confine the in-situ grown KVPF into the mesoporous carbon CMK-3 (denoted KVPF@CMK-3). The assembled KVPF@CMK-3 nanocomposite features three-dimensional interconnected carbon channels, which not only offer abundant active sites and significantly accelerate K+/electron transport, but also prevent the growth of KVPF nanoparticle agglomerates, hence stabilizing the structure of the material. Additionally, V–F–C bonds are created at the interface of KVPF and CMK-3, which reduce the loss of F and stabilize the electrode interface. Thus, when tested as a cathode material for PIBs, the KVPF@CMK-3 nanocomposite delivers superior reversible capacitiy (103.2 mAh g−1 at 0.2 C), outstanding rate performance (90.1 mAh g−1 at 20 C), and steady cycling performance (92.2 mAh g−1 at 10 C and with the retention of 88.2% after 500 cycles). Moreover, its potassium storage mechanism is further examined by ex-situ XRD and ex-situ XPS techniques. The above synthetic strategy demonstrates the potential of KVPF@CMK-3 to be applied as the cathode for PIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KVPO4F/碳纳米复合材料,具有高度可接近的活性位点和坚固的化学键,用于先进的钾离子电池
KVPO4F(KVPF)由于其高理论容量、优异的工作电压和三维K+传导途径,作为钾离子电池(PIBs)的潜在阴极材料已被广泛研究。然而,KVPF的电化学行为受到磷酸盐骨架固有的较差的电子导电性和不稳定的电极/电解质界面的限制。为了解决上述问题,本工作提出了一种渗透煅烧方法,将原位生长的KVPF限制在中孔碳CMK-3中(表示为KVPF@CMK-3)。组装好的KVPF@CMK-3纳米复合材料具有三维互连的碳通道,不仅提供了丰富的活性位点,显著加速了K+/电子的传输,还阻止了KVPF纳米颗粒团聚体的生长,从而稳定了材料的结构。此外,在KVPF和CMK-3的界面处形成了V–F–C键,这减少了F的损失并稳定了电极界面。因此,当作为PIB的阴极材料进行测试时KVPF@CMK-3纳米复合材料具有优异的可逆容量(0.2℃时为103.2 mAh g−1)、优异的倍率性能(20℃时为90.1 mAh g–1)和稳定的循环性能(10℃时为92.2 mAh g−1,500次循环后保持率为88.2%)。此外,通过非原位XRD和非原位XPS技术进一步研究了其储钾机理。上述综合策略展示了KVPF@CMK-3以用作PIB的阴极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Energy & Environment
Green Energy & Environment Energy-Renewable Energy, Sustainability and the Environment
CiteScore
16.80
自引率
3.80%
发文量
332
审稿时长
12 days
期刊介绍: Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.
期刊最新文献
Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis Research on the application of defect engineering in the field of environmental catalysis Recyclable bio-based epoxy resin thermoset polymer from wood for circular economy Ti3C2 MXene nanosheets integrated cobalt-doped nickel hydroxide heterostructured composite: An efficient electrocatalyst for overall water-splitting Dilemma and strategies for production of diesel-like hydrocarbons by deoxygenation of biomass-derived fatty acids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1