Sea surface temperature trends for Tampa Bay, West Florida Shelf and the deep Gulf of Mexico

IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Deep-sea Research Part Ii-topical Studies in Oceanography Pub Date : 2023-10-01 DOI:10.1016/j.dsr2.2023.105321
Alexander K. Nickerson, Robert H. Weisberg, Lianyuan Zheng, Yonggang Liu
{"title":"Sea surface temperature trends for Tampa Bay, West Florida Shelf and the deep Gulf of Mexico","authors":"Alexander K. Nickerson,&nbsp;Robert H. Weisberg,&nbsp;Lianyuan Zheng,&nbsp;Yonggang Liu","doi":"10.1016/j.dsr2.2023.105321","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Sea surface temperatures<span> for Tampa Bay, the West Florida Continental Shelf (WFS) and the adjacent deep </span></span>Gulf of Mexico are examined for trends. Data sets are from stations maintained by the Hillsborough County Environmental Protection Commission, buoys maintained by the University of South Florida Coastal Ocean Monitoring and Prediction System and the National Oceanic and Atmosphere Administration (NOAA) National </span>Data Buoy Center, the Optimum Interpolation Sea Surface Temperature analyses by the NOAA National Centers for Environmental Information, and the Hadley Centre Sea Surface Temperature. These various data sets, each with different record lengths, require the consideration of trends both on the basis of record length and start time. Tampa Bay shows a warming trend, but with considerable inter-annual variability and start time bias resulting in a lack of statistical significance in more recent years. The WFS is also generally warming, and its inter-annual variability is largely controlled by the upwelling of cooler, deeper Gulf of Mexico water across the shelf break. The deep GOM shows statistically significant warming in most of the data except for the “gappy” records from buoys, both along the continental shelf and in the deep water. Trends in the Gulf of Mexico are mostly between 0.1 and 0.5 </span><sup>°</sup>C/decade, somewhat larger than the secular rise found globally, although within the range of the observed decadal variability.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"211 ","pages":"Article 105321"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064523000711","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Sea surface temperatures for Tampa Bay, the West Florida Continental Shelf (WFS) and the adjacent deep Gulf of Mexico are examined for trends. Data sets are from stations maintained by the Hillsborough County Environmental Protection Commission, buoys maintained by the University of South Florida Coastal Ocean Monitoring and Prediction System and the National Oceanic and Atmosphere Administration (NOAA) National Data Buoy Center, the Optimum Interpolation Sea Surface Temperature analyses by the NOAA National Centers for Environmental Information, and the Hadley Centre Sea Surface Temperature. These various data sets, each with different record lengths, require the consideration of trends both on the basis of record length and start time. Tampa Bay shows a warming trend, but with considerable inter-annual variability and start time bias resulting in a lack of statistical significance in more recent years. The WFS is also generally warming, and its inter-annual variability is largely controlled by the upwelling of cooler, deeper Gulf of Mexico water across the shelf break. The deep GOM shows statistically significant warming in most of the data except for the “gappy” records from buoys, both along the continental shelf and in the deep water. Trends in the Gulf of Mexico are mostly between 0.1 and 0.5 °C/decade, somewhat larger than the secular rise found globally, although within the range of the observed decadal variability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
坦帕湾、西佛罗里达大陆架和墨西哥湾深处的海面温度趋势
对坦帕湾、西佛罗里达大陆架(WFS)和邻近的墨西哥湾深海的海面温度趋势进行了研究。数据集来自希尔斯伯勒县环境保护委员会维护的站点、南佛罗里达大学海岸海洋监测和预测系统以及美国国家海洋和大气管理局(NOAA)国家数据浮标中心维护的浮标,NOAA国家环境信息中心的最佳插值海面温度分析和哈德利中心的海面温度。这些不同的数据集,每个数据集都有不同的记录长度,需要根据记录长度和开始时间来考虑趋势。坦帕湾呈现出变暖趋势,但具有相当大的年际变化性和开始时间偏差,导致近年来缺乏统计意义。WFS总体上也在变暖,其年际变化在很大程度上受较冷、较深的墨西哥湾水通过陆架断裂的上升流控制。除了大陆架沿岸和深水中浮标的“gappy”记录外,深层GOM在大多数数据中都显示出统计学意义上的显著变暖。墨西哥湾的趋势大多在0.1至0.5°C/十年之间,略大于全球的长期上升,尽管在观测到的十年变化范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
16.70%
发文量
115
审稿时长
3 months
期刊介绍: Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.
期刊最新文献
Unveiling marine heatwave dynamics in the Persian /Arabian Gulf and the Gulf of Oman: A spatio-temporal analysis and future projections Ecophenotypic variation in a cosmopolitan reef-building coral suggests reduced deep-sea reef growth under ocean change Siliceous microfossil assemblages in the southern Emperor Seamount Chain sediments and their biogeographical and paleoceanographical implications The first Mud Dragons (Kinorhyncha) from the Emperor Seamount Chain (Northwestern Pacific) with notes on their biogeography and distribution patterns in the Pacific Deep-Sea Latitudinal variation in zooplankton over the Emperor Seamounts (34°–44° N, 170°–171° E) during the summer of 2019
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1