Bayesian estimation for mode and anti-mode preserving circular distributions

IF 2 Q2 ECONOMICS Econometrics and Statistics Pub Date : 2023-07-01 DOI:10.1016/j.ecosta.2021.03.004
Toshihiro Abe , Yoichi Miyata , Takayuki Shiohama
{"title":"Bayesian estimation for mode and anti-mode preserving circular distributions","authors":"Toshihiro Abe ,&nbsp;Yoichi Miyata ,&nbsp;Takayuki Shiohama","doi":"10.1016/j.ecosta.2021.03.004","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>A Bayesian estimation is considered for unknown parameters of a unimodal skew circular distribution on the circle, where the underlying distribution has mode and anti-mode preserving properties. This distribution is obtained by using a transformation of the inverse </span>monotone function, and the shape of the resulting density can be flat-topped or sharply peaked at its mode. With regard to </span>Bayes estimates<span><span> (BEs), the boundary-avoiding priors are assumed so that the skewness and peakedness parameters of the distribution do not lie on the boundary of the parameter space. In addition to the BEs, </span>maximum likelihood estimations<span><span> (MLEs) are conducted to compare the performances in small samples, and found that the BEs are more robust than the method of maximum likelihood. As the pairs of parameters between location and skewness and between concentration and peakedness are independent of each other, approximate BEs using Lindley’s methods become rather simple. Monte Carlo simulations are performed to compare the accuracy of the BE and </span>MLE, and some circular datasets are analyzed for illustrative purposes.</span></span></p></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"27 ","pages":"Pages 136-160"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecosta.2021.03.004","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221000344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

A Bayesian estimation is considered for unknown parameters of a unimodal skew circular distribution on the circle, where the underlying distribution has mode and anti-mode preserving properties. This distribution is obtained by using a transformation of the inverse monotone function, and the shape of the resulting density can be flat-topped or sharply peaked at its mode. With regard to Bayes estimates (BEs), the boundary-avoiding priors are assumed so that the skewness and peakedness parameters of the distribution do not lie on the boundary of the parameter space. In addition to the BEs, maximum likelihood estimations (MLEs) are conducted to compare the performances in small samples, and found that the BEs are more robust than the method of maximum likelihood. As the pairs of parameters between location and skewness and between concentration and peakedness are independent of each other, approximate BEs using Lindley’s methods become rather simple. Monte Carlo simulations are performed to compare the accuracy of the BE and MLE, and some circular datasets are analyzed for illustrative purposes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保模和反保模圆形分布的贝叶斯估计
考虑了圆上单峰斜圆形分布的未知参数的贝叶斯估计,其中基础分布具有保模和反保模特性。这种分布是通过使用逆单调函数的变换来获得的,并且所得密度的形状可以是平顶的,也可以是在其模式下尖锐的峰值。关于贝叶斯估计(BEs),假设边界回避先验,使得分布的偏度和峰值参数不位于参数空间的边界上。除了BEs之外,还进行了最大似然估计(MLE)来比较小样本中的性能,发现BEs比最大似然方法更具鲁棒性。由于位置和偏度之间以及浓度和峰值之间的参数对彼此独立,因此使用Lindley方法的近似边界元变得相当简单。进行蒙特卡罗模拟以比较BE和MLE的准确性,并分析了一些圆形数据集以便于说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
期刊最新文献
Editorial Board Empirical best predictors under multivariate Fay-Herriot models and their numerical approximation Forecasting with Machine Learning methods and multiple large datasets[formula omitted] Specification tests for normal/gamma and stable/gamma stochastic frontier models based on empirical transforms A Bayesian flexible model for testing Granger causality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1