Lei Zhao , Jinxia Jiang , Shuhao Xiao , Zhao Li , Junjie Wang , Xinxin Wei , Qingquan Kong , Jun Song Chen , Rui Wu
{"title":"PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction","authors":"Lei Zhao , Jinxia Jiang , Shuhao Xiao , Zhao Li , Junjie Wang , Xinxin Wei , Qingquan Kong , Jun Song Chen , Rui Wu","doi":"10.1016/j.nanoms.2022.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>The oxygen reduction reaction (ORR) electrocatalytic activity of Pt-based catalysts can be significantly improved by supporting Pt and its alloy nanoparticles (NPs) on a porous carbon support with large surface area. However, such catalysts are often obtained by constructing porous carbon support followed by depositing Pt and its alloy NPs inside the pores, in which the migration and agglomeration of Pt NPs are inevitable under harsh operating conditions owing to the relatively weak interaction between NPs and carbon support. Here we develop a facile electrospinning strategy to <em>in-situ</em> prepare small-sized PtZn NPs supported on porous nitrogen-doped carbon nanofibers. Electrochemical results demonstrate that the as-prepared PtZn alloy catalyst exhibits excellent initial ORR activity with a half-wave potential (E<sub>1/2</sub>) of 0.911 V versus reversible hydrogen electrode (<em>vs.</em> RHE) and enhanced durability with only decreasing 11 mV after 30,000 potential cycles, compared to a more significant drop of 24 mV in E<sub>1/2</sub> of Pt/C catalysts (after 10,000 potential cycling). Such a desirable performance is ascribed to the created triple-phase reaction boundary assisted by the evaporation of Zn and strengthened interaction between nanoparticles and the carbon support, inhibiting the migration and aggregation of NPs during the ORR.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 3","pages":"Pages 329-334"},"PeriodicalIF":9.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965122000216","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The oxygen reduction reaction (ORR) electrocatalytic activity of Pt-based catalysts can be significantly improved by supporting Pt and its alloy nanoparticles (NPs) on a porous carbon support with large surface area. However, such catalysts are often obtained by constructing porous carbon support followed by depositing Pt and its alloy NPs inside the pores, in which the migration and agglomeration of Pt NPs are inevitable under harsh operating conditions owing to the relatively weak interaction between NPs and carbon support. Here we develop a facile electrospinning strategy to in-situ prepare small-sized PtZn NPs supported on porous nitrogen-doped carbon nanofibers. Electrochemical results demonstrate that the as-prepared PtZn alloy catalyst exhibits excellent initial ORR activity with a half-wave potential (E1/2) of 0.911 V versus reversible hydrogen electrode (vs. RHE) and enhanced durability with only decreasing 11 mV after 30,000 potential cycles, compared to a more significant drop of 24 mV in E1/2 of Pt/C catalysts (after 10,000 potential cycling). Such a desirable performance is ascribed to the created triple-phase reaction boundary assisted by the evaporation of Zn and strengthened interaction between nanoparticles and the carbon support, inhibiting the migration and aggregation of NPs during the ORR.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.