Constructing P-CoMoO4@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting

IF 9.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2023-09-01 DOI:10.1016/j.nanoms.2021.05.004
Ning You , Shuai Cao , Mengqiu Huang , Xiaoming Fan , Kun Shi , Haijian Huang , Zhangxian Chen , Zeheng Yang , Weixin Zhang
{"title":"Constructing P-CoMoO4@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting","authors":"Ning You ,&nbsp;Shuai Cao ,&nbsp;Mengqiu Huang ,&nbsp;Xiaoming Fan ,&nbsp;Kun Shi ,&nbsp;Haijian Huang ,&nbsp;Zhangxian Chen ,&nbsp;Zeheng Yang ,&nbsp;Weixin Zhang","doi":"10.1016/j.nanoms.2021.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost, high activity and stability is a challenging issue in electrochemical water splitting. Herein, we report the fabrication of heterostructured P-CoMoO<sub>4</sub>@NiCoP on a Ni foam substrate through interface engineering, by adjusting its composition and architecture. Benefitting from the tailored electronic structure and exposed active sites, the heterostructured P-CoMoO<sub>4</sub>@NiCoP/NF arrays can be coordinated to boost the overall water splitting. In addition, the superhydrophilic and superaerophobic properties of P-CoMoO<sub>4</sub>@NiCoP/NF make it conducive to water dissociation and bubble separation in the electrocatalytic process. The heterostructured P-CoMoO<sub>4</sub>@NiCoP/NF exhibits excellent bifunctional electrocatalysis activity with a low overpotential of 66 ​mV at 10 ​mA ​cm<sup>−2</sup> for HER and 252 ​mV at 100 ​mA ​cm<sup>−2</sup> for OER. Only 1.62 ​V potential is required to deliver 20 ​mA ​cm<sup>−2</sup> in a two-electrode electrolysis system, providing a decent overall water splitting performance. The rational construction of the heterostructure makes it possible to regulate the electronic structures and active sites of the electrocatalysts to promote their catalytic activity.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 3","pages":"Pages 278-286"},"PeriodicalIF":9.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nanoms.2021.05.004","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965121000222","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 9

Abstract

Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost, high activity and stability is a challenging issue in electrochemical water splitting. Herein, we report the fabrication of heterostructured P-CoMoO4@NiCoP on a Ni foam substrate through interface engineering, by adjusting its composition and architecture. Benefitting from the tailored electronic structure and exposed active sites, the heterostructured P-CoMoO4@NiCoP/NF arrays can be coordinated to boost the overall water splitting. In addition, the superhydrophilic and superaerophobic properties of P-CoMoO4@NiCoP/NF make it conducive to water dissociation and bubble separation in the electrocatalytic process. The heterostructured P-CoMoO4@NiCoP/NF exhibits excellent bifunctional electrocatalysis activity with a low overpotential of 66 ​mV at 10 ​mA ​cm−2 for HER and 252 ​mV at 100 ​mA ​cm−2 for OER. Only 1.62 ​V potential is required to deliver 20 ​mA ​cm−2 in a two-electrode electrolysis system, providing a decent overall water splitting performance. The rational construction of the heterostructure makes it possible to regulate the electronic structures and active sites of the electrocatalysts to promote their catalytic activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正在构建P-CoMoO4@NiCoP泡沫镍上的异质结构纳米阵列作为有效的双功能电催化剂用于整体水分解
通过开发低成本、高活性和稳定性的双功能电催化剂的结构和组成来提高催化活性和耐久性是电化学水分解中的一个具有挑战性的问题。在此,我们报道了异质结构的制造P-CoMoO4@NiCoP通过界面工程,通过调整其组成和结构,在泡沫镍基底上。得益于定制的电子结构和暴露的活性位点,异质结构P-CoMoO4@NiCoP/NF阵列可以进行协调以促进整体水分解。此外P-CoMoO4@NiCoP/NF使其有利于电催化过程中的水解离和气泡分离。异质结构P-CoMoO4@NiCoP/NF表现出优异的双功能电催化活性,具有66的低过电位​10时mV​毫安​HER和252的cm−2​100时mV​毫安​OER为cm−2。仅1.62​需要V电位才能提供20​毫安​cm−2,提供了良好的整体水分解性能。异质结构的合理构建使得调节电催化剂的电子结构和活性位点以提高其催化活性成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Utilizing a defective MgO layer for engineering multifunctional Co-MOF hybrid materials with tailored leaf-like and polyhedral structures for optimal electrochemical and photocatalytic activities Silicon-based dielectric elastomer with amino-complexed hybrids towards high actuation performance Revisiting the mitigation of coke formation: Synergism between support & promoters' role toward robust yield in the CO2 reformation of methane Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour Structure transformation induced bi-component Co–Mo/A-Co(OH)2 as highly efficient hydrogen evolution catalyst in alkaline media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1