Characterising the glass transition temperature-structure relationship through a recurrent neural network

Q1 Physics and Astronomy Journal of Non-Crystalline Solids: X Pub Date : 2023-06-01 DOI:10.1016/j.nocx.2023.100185
Claudia Borredon , Luis A. Miccio , Silvina Cerveny , Gustavo A. Schwartz
{"title":"Characterising the glass transition temperature-structure relationship through a recurrent neural network","authors":"Claudia Borredon ,&nbsp;Luis A. Miccio ,&nbsp;Silvina Cerveny ,&nbsp;Gustavo A. Schwartz","doi":"10.1016/j.nocx.2023.100185","DOIUrl":null,"url":null,"abstract":"<div><p>Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (T<sub>g</sub>) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an <em>m</em>-dimensional <em>T</em><sub><em>g</em></sub>-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100185"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Crystalline Solids: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590159123000377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过递归神经网络表征玻璃化转变温度-结构关系
定量构效关系(QSPR)是一种发现分子结构与其物理化学性质之间相关性的强大分析方法。玻璃化转变温度(Tg)是报道最多的性质之一,其表征对于调节材料的物理性质至关重要。在这项工作中,我们通过开发一个与分子玻璃形成剂的化学结构和玻璃化转变温度相关的递归神经网络(RNN),探索了机器学习在QSPR领域的应用。此外,我们执行了从RNN架构的最后一个隐藏层到m维Tg定向空间的化学嵌入。然后,我们测试了该模型来预测必需氨基酸和肽的玻璃化转变温度。这些结果非常有前景,可以为探索和设计新材料打开大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Non-Crystalline Solids: X
Journal of Non-Crystalline Solids: X Materials Science-Materials Chemistry
CiteScore
3.20
自引率
0.00%
发文量
50
审稿时长
76 days
期刊最新文献
Editorial Board Preface Preface Altering the optical, physical, and TL Dosimetric properties of MgSO4:Dy2O3:B2O3 transparent glass ceramic system: Evaluating the impact of roughness control and ZnO inclusion Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1