Pia Benaud , Karen Anderson , Mike R. James , Timothy A. Quine , John N. Quinton , Richard E. Brazier
{"title":"Structure-from-Motion Photogrammetry and Rare Earth Oxides can quantify diffuse and convergent soil loss and source apportionment","authors":"Pia Benaud , Karen Anderson , Mike R. James , Timothy A. Quine , John N. Quinton , Richard E. Brazier","doi":"10.1016/j.iswcr.2023.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately quantifying rates of soil erosion requires capturing both the volumetric nature of the visible, convergent fluvial pathways (also known as rills) and the subtle nature of the less-visible, diffuse pathways (interrill areas). The aim of this study was to use Rare Earth Oxide (REO) tracers and Structure-from-Motion (SfM) photogrammetry to elucidate retrospective information about soil erosion rates and sediment sources during different soil erosion conditions, within a controlled laboratory environment. The experimental conditions created erosion events consistent with diffuse and convergent erosion processes. REO tracers allowed the sediment transport distances of over 2 m to be described, and helped resolved the relative contribution of diffuse and convergent soil erosion; interrill areas were also identified as a significant sediment sources soil loss under convergent erosion conditions. While the potential for SfM photogrammetry to resolve sub-millimetre elevations changes was demonstrated, under some conditions non-erosional changes in surface elevation, such as compaction, exceeded volumes of soil loss via diffuse erosion. The discrepancies between SfM Photogrammetry calculations and REO tagged sediment export were beneficial, identifying that during soil erosion events sediment in both aggregate and particle form is deposited within the convergent features, even when the rill extended the full length of the soil surface. The combination of SfM photogrammetry and REO tracers has provided a novel platform for building a spatial understanding of patterns of soil loss and source apportionment between rill and interrill erosion.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 4","pages":"Pages 633-648"},"PeriodicalIF":7.3000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000291","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately quantifying rates of soil erosion requires capturing both the volumetric nature of the visible, convergent fluvial pathways (also known as rills) and the subtle nature of the less-visible, diffuse pathways (interrill areas). The aim of this study was to use Rare Earth Oxide (REO) tracers and Structure-from-Motion (SfM) photogrammetry to elucidate retrospective information about soil erosion rates and sediment sources during different soil erosion conditions, within a controlled laboratory environment. The experimental conditions created erosion events consistent with diffuse and convergent erosion processes. REO tracers allowed the sediment transport distances of over 2 m to be described, and helped resolved the relative contribution of diffuse and convergent soil erosion; interrill areas were also identified as a significant sediment sources soil loss under convergent erosion conditions. While the potential for SfM photogrammetry to resolve sub-millimetre elevations changes was demonstrated, under some conditions non-erosional changes in surface elevation, such as compaction, exceeded volumes of soil loss via diffuse erosion. The discrepancies between SfM Photogrammetry calculations and REO tagged sediment export were beneficial, identifying that during soil erosion events sediment in both aggregate and particle form is deposited within the convergent features, even when the rill extended the full length of the soil surface. The combination of SfM photogrammetry and REO tracers has provided a novel platform for building a spatial understanding of patterns of soil loss and source apportionment between rill and interrill erosion.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research