TELP theory: Elucidating the major observations of Rieger et al. 2021 in mitochondria

James Weifu Lee
{"title":"TELP theory: Elucidating the major observations of Rieger et al. 2021 in mitochondria","authors":"James Weifu Lee","doi":"10.1016/j.mitoco.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>The transmembrane-electrostatically localized protons (TELP) theory may represent a complementary development to Mitchell's chemiosmotic theory. The combination of the two together can now excellently explain the energetics in mitochondria. My calculated transmembrane-attractive force between an excess proton and an excess hydroxide explains how TELP may stay within a 1-nm thin layer at the liquid-membrane interface. Consequently, any pH sensor (sEcGFP) located at least 2–3 nm away from the membrane surface will not be able to see TELP. This feature as predicted from the TELP model was observed exactly in the experiment of Rieger et al., 2021. In contrast to their belief “the Δp at ATP synthase is almost negligible under OXPHOS conditions”, I find, when TELP activity is included in the energy calculations, there is plenty of total protonic Gibbs free energy (<span><math><mrow><mo>Δ</mo><msub><mi>G</mi><mi>T</mi></msub></mrow></math></span>) well above the physiologically required value of −24.5 kJ mol<sup>−1</sup> to drive ATP synthesis through F<sub>o</sub>F<sub>1</sub>-ATP synthase.</p></div>","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"1 ","pages":"Pages 62-72"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590279223000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The transmembrane-electrostatically localized protons (TELP) theory may represent a complementary development to Mitchell's chemiosmotic theory. The combination of the two together can now excellently explain the energetics in mitochondria. My calculated transmembrane-attractive force between an excess proton and an excess hydroxide explains how TELP may stay within a 1-nm thin layer at the liquid-membrane interface. Consequently, any pH sensor (sEcGFP) located at least 2–3 nm away from the membrane surface will not be able to see TELP. This feature as predicted from the TELP model was observed exactly in the experiment of Rieger et al., 2021. In contrast to their belief “the Δp at ATP synthase is almost negligible under OXPHOS conditions”, I find, when TELP activity is included in the energy calculations, there is plenty of total protonic Gibbs free energy (ΔGT) well above the physiologically required value of −24.5 kJ mol−1 to drive ATP synthesis through FoF1-ATP synthase.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TELP理论:阐明Rieger等人2021在线粒体中的主要观察结果
跨膜静电定域质子(TELP)理论可能代表了对米切尔化学渗透理论的补充发展。两者结合在一起,现在可以很好地解释线粒体中的能量学。我计算的过量质子和过量氢氧化物之间的跨膜吸引力解释了TELP如何留在液膜界面的1-nm薄层内。因此,任何距离膜表面至少2–3 nm的pH传感器(sEcGFP)都无法看到TELP。根据TELP模型预测的这一特征在Rieger等人2021的实验中得到了准确的观察。与他们认为的“在OXPHOS条件下,ATP合酶的Δp几乎可以忽略不计”相反,我发现,当TELP活性包括在能量计算中时,有大量的总质子吉布斯自由能(ΔGT)远高于−24.5 kJ mol−1的生理学要求值,以通过FoF1 ATP合酶驱动ATP合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural determinants of mitochondrial STAT3 targeting and function Mitochondrial calcium transport during autophagy initiation Photobleaching and phototoxicity of mitochondria in live cell fluorescent super-resolution microscopy Antioxidants targeting mitochondria function in kidney diseases Is localized chemiosmosis necessary in mitochondria? Is Lee's TELP protonic capacitor hypothesis a reasonable model?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1