{"title":"Assessing the comprehensive importance of power grid nodes based on DEA","authors":"Xin Gao , Yunxia Ye , Wenxin Su , Linyan Chen","doi":"10.1016/j.ijcip.2023.100614","DOIUrl":null,"url":null,"abstract":"<div><p>The safe and stable operation of the power grid is crucial to guarantee basic human demands and promote sustainable economic and social development. To better maintain the sound operation of the power grid, it is meaningful to analyse node importance and identify critical nodes based on the topology of the grid and its performance under cascading failure scenarios. Based on complex network theory, this paper proposes four node importance assessment metrics from static and dynamic perspectives. It performs a comprehensive importance assessment of power grid nodes based on data envelopment analysis (DEA) technology and then further identifies critical nodes in the system. A case study is conducted to validate the methodology. Results show that the suggested strategy may successfully identify the grid's key nodes with high accuracy and differentiation degree. This study is of great value for formulating reasonable emergency plans and improving power grid resilience.</p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"42 ","pages":"Article 100614"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548223000276","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The safe and stable operation of the power grid is crucial to guarantee basic human demands and promote sustainable economic and social development. To better maintain the sound operation of the power grid, it is meaningful to analyse node importance and identify critical nodes based on the topology of the grid and its performance under cascading failure scenarios. Based on complex network theory, this paper proposes four node importance assessment metrics from static and dynamic perspectives. It performs a comprehensive importance assessment of power grid nodes based on data envelopment analysis (DEA) technology and then further identifies critical nodes in the system. A case study is conducted to validate the methodology. Results show that the suggested strategy may successfully identify the grid's key nodes with high accuracy and differentiation degree. This study is of great value for formulating reasonable emergency plans and improving power grid resilience.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.