A New Statistic for Bayesian Hypothesis Testing

IF 2 Q2 ECONOMICS Econometrics and Statistics Pub Date : 2023-04-01 DOI:10.1016/j.ecosta.2021.10.009
Su Chen , Stephen G. Walker
{"title":"A New Statistic for Bayesian Hypothesis Testing","authors":"Su Chen ,&nbsp;Stephen G. Walker","doi":"10.1016/j.ecosta.2021.10.009","DOIUrl":null,"url":null,"abstract":"<div><p>A new Bayesian–inspired statistic<span><span> for hypothesis testing<span> is proposed which compares two posterior distributions; the observed posterior and the expected posterior under the </span></span>null<span> model. The Kullback–Leibler divergence between the two posterior distributions yields a test statistic which can be interpreted as a penalized log–Bayes factor with the penalty term converging to a constant as the sample size increases. Hence, asymptotically, the statistic behaves as a Bayes factor<span>. Viewed as a penalized Bayes factor, this approach solves the long standing issue of using improper priors with the Bayes factor, since only posterior summaries are needed for the new statistic. Further motivation for the new statistic is a minimal move from the Bayes factor which requires no tuning nor splitting of data into training and inference, and can use improper priors. Critical regions for the test can be assessed using frequentist notions of Type I error.</span></span></span></p></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"26 ","pages":"Pages 139-152"},"PeriodicalIF":2.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221001246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

A new Bayesian–inspired statistic for hypothesis testing is proposed which compares two posterior distributions; the observed posterior and the expected posterior under the null model. The Kullback–Leibler divergence between the two posterior distributions yields a test statistic which can be interpreted as a penalized log–Bayes factor with the penalty term converging to a constant as the sample size increases. Hence, asymptotically, the statistic behaves as a Bayes factor. Viewed as a penalized Bayes factor, this approach solves the long standing issue of using improper priors with the Bayes factor, since only posterior summaries are needed for the new statistic. Further motivation for the new statistic is a minimal move from the Bayes factor which requires no tuning nor splitting of data into training and inference, and can use improper priors. Critical regions for the test can be assessed using frequentist notions of Type I error.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的贝叶斯假设检验统计量
提出了一种新的贝叶斯启发的假设检验统计量,它比较了两种后验分布;零模型下观察到的后验和预期的后验。两个后验分布之间的Kullback–Leibler散度产生了一个测试统计量,该统计量可以被解释为惩罚的log–Bayes因子,随着样本量的增加,惩罚项收敛为常数。因此,渐近地,统计量表现为贝叶斯因子。作为一种惩罚贝叶斯因子,这种方法解决了长期存在的使用贝叶斯因子的不适当先验的问题,因为新的统计只需要后验摘要。新统计的进一步动机是从贝叶斯因子的最小移动,贝叶斯因子不需要调整或将数据分解为训练和推理,并且可能使用不适当的先验。可以使用I型误差的频率论概念来评估测试的关键区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
期刊最新文献
Editorial Board Empirical best predictors under multivariate Fay-Herriot models and their numerical approximation Forecasting with Machine Learning methods and multiple large datasets[formula omitted] Specification tests for normal/gamma and stable/gamma stochastic frontier models based on empirical transforms A Bayesian flexible model for testing Granger causality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1