Sanitizable signature scheme with privacy protection for electronic medical data sharing

Zhiyan Xu , Min Luo , Cong Peng , Qi Feng
{"title":"Sanitizable signature scheme with privacy protection for electronic medical data sharing","authors":"Zhiyan Xu ,&nbsp;Min Luo ,&nbsp;Cong Peng ,&nbsp;Qi Feng","doi":"10.1016/j.csa.2023.100018","DOIUrl":null,"url":null,"abstract":"<div><p>Electronic medicine has received more and more attention because of its ability to provide more efficient and better medical services. However, the characteristics of electronic medical networks make them more vulnerable to security threats such as data integrity and user privacy leakage. Traditional digital signatures cannot meet the diversity and privacy requirements of medical data applications. Sanitizable signatures incorporate sanitization capabilities into signatures to allow designated sanitizers to modify variable parts of a message in a controlled manner without the cooperation of the original signer. This paper uses the key-exposure free chameleon hash function to convert the data sanitization operation into using trapdoor keys to find collisions in the key-exposure free chameleon hash function, and builds a privacy-preserving sanitizable signature scheme. Security analysis and performance evaluation demonstrate that our new scheme achieves public verifiability, which greatly reduces computing costs while effectively ensuring data security and user privacy, and is especially suitable for electronic medical data sharing scenarios.</p></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"1 ","pages":"Article 100018"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918423000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Electronic medicine has received more and more attention because of its ability to provide more efficient and better medical services. However, the characteristics of electronic medical networks make them more vulnerable to security threats such as data integrity and user privacy leakage. Traditional digital signatures cannot meet the diversity and privacy requirements of medical data applications. Sanitizable signatures incorporate sanitization capabilities into signatures to allow designated sanitizers to modify variable parts of a message in a controlled manner without the cooperation of the original signer. This paper uses the key-exposure free chameleon hash function to convert the data sanitization operation into using trapdoor keys to find collisions in the key-exposure free chameleon hash function, and builds a privacy-preserving sanitizable signature scheme. Security analysis and performance evaluation demonstrate that our new scheme achieves public verifiability, which greatly reduces computing costs while effectively ensuring data security and user privacy, and is especially suitable for electronic medical data sharing scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电子医疗数据共享的具有隐私保护的可消毒签名方案
电子医疗因其能够提供更高效、更好的医疗服务而受到越来越多的关注。然而,电子医疗网络的特点使其更容易受到数据完整性和用户隐私泄露等安全威胁。传统的数字签名无法满足医疗数据应用的多样性和隐私要求。可消毒签名在签名中加入了消毒功能,允许指定的消毒程序以可控的方式修改消息的可变部分,而无需原始签名者的配合。本文使用无密钥暴露的变色龙哈希函数将数据净化操作转换为使用陷门密钥来发现无密钥暴露变色龙哈希功能中的冲突,并构建了一个保护隐私的可净化签名方案。安全分析和性能评估表明,我们的新方案实现了公共可验证性,在有效确保数据安全和用户隐私的同时,大大降低了计算成本,特别适合电子医疗数据共享场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
期刊最新文献
Deep learning-driven defense strategies for mitigating DDoS attacks in cloud computing environments Privacy-preserving security of IoT networks: A comparative analysis of methods and applications Earthworm optimization algorithm based cascade LSTM-GRU model for android malware detection A survey on intrusion detection system in IoT networks Comparison of mitigating DDoS attacks in software defined networking and IoT platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1