An inception V3 approach for malware classification using machine learning and transfer learning

Mumtaz Ahmed , Neda Afreen , Muneeb Ahmed , Mustafa Sameer , Jameel Ahamed
{"title":"An inception V3 approach for malware classification using machine learning and transfer learning","authors":"Mumtaz Ahmed ,&nbsp;Neda Afreen ,&nbsp;Muneeb Ahmed ,&nbsp;Mustafa Sameer ,&nbsp;Jameel Ahamed","doi":"10.1016/j.ijin.2022.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>Malware instances have been extremely used for illegitimate purposes, and new variants of malware are observed every day. Machine learning in network security is one of the prime areas of research today because of its performance and has shown tremendous growth in the last decade. In this paper, we formulate the malware signature as a 2D image representation and leverage deep learning approaches to characterize the signature of malware contained in BIG15 dataset across nine classes. The current research compares the performance of various machine learning and deep learning technologies towards malware classification such as Logistic Regression (LR), Artificial Neural Network (ANN), Convolutional Neural Network (CNN), transfer learning on CNN and Long Short Term Memory (LSTM). The transfer learning approach using InceptionV3 resulted in a good performance with respect to the compared models like LSTM with a classification accuracy of 98.76% on the test dataset and 99.6% on the train dataset.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"4 ","pages":"Pages 11-18"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603022000252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malware instances have been extremely used for illegitimate purposes, and new variants of malware are observed every day. Machine learning in network security is one of the prime areas of research today because of its performance and has shown tremendous growth in the last decade. In this paper, we formulate the malware signature as a 2D image representation and leverage deep learning approaches to characterize the signature of malware contained in BIG15 dataset across nine classes. The current research compares the performance of various machine learning and deep learning technologies towards malware classification such as Logistic Regression (LR), Artificial Neural Network (ANN), Convolutional Neural Network (CNN), transfer learning on CNN and Long Short Term Memory (LSTM). The transfer learning approach using InceptionV3 resulted in a good performance with respect to the compared models like LSTM with a classification accuracy of 98.76% on the test dataset and 99.6% on the train dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种使用机器学习和迁移学习的恶意软件分类的初始V3方法
恶意软件实例被极端地用于非法目的,每天都会观察到新的恶意软件变体。由于其性能,网络安全中的机器学习是当今的主要研究领域之一,并且在过去十年中表现出了巨大的增长。在本文中,我们将恶意软件签名公式化为2D图像表示,并利用深度学习方法来表征BIG15数据集中九类恶意软件的签名。目前的研究比较了各种机器学习和深度学习技术在恶意软件分类方面的性能,如逻辑回归(LR)、人工神经网络(ANN)、卷积神经网络(CNN)、CNN上的迁移学习和长短期记忆(LSTM)。与LSTM等比较模型相比,使用InceptionV3的迁移学习方法具有良好的性能,在测试数据集上的分类准确率为98.76%,在训练数据集上为99.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
Designing a novel network anomaly detection framework using multi-serial stacked network with optimal feature selection procedures over DDOS attacks Infrared spectral imaging-based image recognition for motion detection Online and offline collaborative abnormal traffic intelligent detection system based on elastic lightweight width learning algorithm Resource optimization algorithm for 5G core network integrating NFV and SDN technologies Teacher Probability Reconstruction based knowledge distillation within intelligent network compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1